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Executive Summary 

 

This deliverable reports on the outputs of eight Early Stage 

Researchers (ESR7-ESR14) in work package, WP5 (Rail and 

Road Infrastructure), under the supervision of academic and 

industrial experts during the three years of their projects within 

the EU TRUSS (Training in Reducing Uncertainty in Structural 

Safety, 2015-2018) Innovative Training Network (ITN) 

programme (http://trussitn.eu/). Two types of infrastructure are 

analysed in WP5: bridges (ESR7-ESR12) and pavements 

(ESR13-ESR14). The first six projects aim to reduce 

uncertainty in bridge safety. They address areas of work such 

as bridge condition assessment (ESR7), probabilistic modelling 

of bridge damage using damage indicators (ESR8), railway 

bridge condition monitoring and fault diagnostics (ESR9), 

condition assessment based on measured vibration level 

(ESR10), the use of optical fibre distributed sensing for 

monitoring (ESR11), and the use of displacement and velocity 

measurements for damage localisation (ESR12). The last two 

projects are on uncertainty in pavement safety, where ESR13 

considers the use of truck sensors for road pavement 

performance and asset management and ESR14 investigates the 

possibility of using unmanned aerial vehicles and 

photogrammetry method for road and bridge inspections. 

Generally, the areas of work developed in this work package 

are vehicle-infrastructure interaction, traffic load modelling, 

road materials, uncertainty modelling, reliability analysis, field 

measurement and Structural Health Monitoring (SHM) of 

bridges.  

Assessment of infrastructure asset condition is one of the key 

areas of work, and a number of projects are focussed on 

methods for defining, measuring and predicting bridge 

condition. Other projects, such as ESR7 and ESR11, place their 

efforts in developing monitoring solutions. For example, 

Farhad Huseynov (ESR7), in Chapter 1, proposes a number of 

accurate and cost-effective monitoring methods for assessing 

the condition of bridge infrastructure. Such methods should 

help to move away from visual and tactile inspections which 

are prone to human error and insufficiently frequent. Three in-

field studies on UK bridges are carried out and their outcomes 

analysed. The first case study is conducted on a three-span 

composite simply supported bridge structure, and it is used to 

obtain the transverse load distribution factors of the deck 

structure. The second case study is focussed on a historical 

railway bridge. Crack movement on the abutment wall is 

monitored using an Imetrum camera system, and it is 

demonstrated that tiny deformations on the masonry wall can 

be detected in three dimensions. A novel method is proposed to 

measure rotations from recorded accelerations, and then use 

these rotations to calculate deflections. In the third case study 

on a simply supported steel railway bridge, a newly axle 

detection system is tested. The system is based on the second 

derivative of the strain signal, and it is demonstrated that peaks 

of this derivative relate to the presence of an axle.      

The project by Barbara Heitner (ESR8), described in Chapter 

2, investigates the integration of the proposed monitoring and 

damage detection methods into a bridge safety model or bridge 

maintenance decision making process. Three contributions are 

achieved. The first is a Bayesian framework for better 

estimation of the implications for safety, of corrosion in 

reinforced concrete bridges. Six different damage indicators are 

proposed and compared based on different sensor 

measurements, such as strain, deflection, and rotation. The 

second contribution is about the use of in-field data, recorded 

in ambient traffic conditions, for the proposed damage 

indicators. The effectiveness is investigated using 

simultaneously recorded temperature data from a highway 

culvert near Ljubljana, in Slovenia. As both temperature and 

corrosion cause small reductions in stiffness, temperature was 

used here as a proxy for damage. The third contribution is in 

the area of finding the influence line of a structure based on in-

field data, without the usage of pre-weighed trucks or a Finite 

Element (FE) model of the structure. An iterative approach is 

used to obtain the influence line and relative axle weights of 

passing trucks. This is a highly significant development as it 

greatly reduces the cost of installation. An influence line is a 

key measure of bridge behaviour and responds significantly to 

damage such as bearing seizure. It is shown that the mean 

inferred Gross Vehicle Weight of the passing trucks also has 

good potential for damage detection, and, as above, the method 

is validated against temperature data (i.e., the method can 

detect the effect of a change in temperature which is strong 

evidence that it can detect damage).  

In Chapter 3, Matteo Vagnoli (ESR9) proposes five bridge 

condition monitoring and diagnostics methods for railway 

bridges. Firstly, a Bayesian Belief Network (BBN) is 

developed and verified using two FE models of bridges. A part 

of the network, known as the Conditional Probability Tables 

(CPTs), are defined using an expert knowledge elicitation 

process. The BBN method can be used to take account of 

interdependencies between different elements and uncertainty 

in bridge behaviour due to deterioration. Secondly, a data 

analysis method for defining Health Indicators of bridge 

elements is proposed. The methodology is tested on two in-

field bridges: a steel truss bridge, and a post-tensioned concrete 

bridge, which were undergoing a progressive damage test. 

Thirdly, a machine learning method is used to assess the health 

state of a post-tensioned concrete bridge automatically. A 

Neuro-Fuzzy Classifier is adopted in this method. Fourthly, a 

method for updating the CPTs of the BBN continuously is 

proposed, where information about the actual health state and 

the knowledge of bridge engineers are merged. Finally, an 

ensemble-based change-point detection method is developed 

and applied to a tunnel structure. The method is used to analyse 

a database of historical and unknown infrastructure behaviour 

and to identify the most critical change of the health state. The 

in-field data is based on tunnel movements due to renewal 

activities. As in ESR7, it is envisaged that such condition 

detection and diagnostics methods would replace time-

consuming, expensive and subjective visual inspections of 

bridges. 

John James Moughty (ESR10) is also concerned with bridge 

deterioration, the influence of environmental and operational 

effects and the measurement of that deterioration. The 

http://trussitn.eu/
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researchers in this project believe that the common modal-

based damage sensitive analysis needs an alternative. Their 

proposed option in Chapter 4 is to use vibration-based damage 

sensitive features which do not require external input loading 

or bridge closures and can be continuously recorded. A number 

of vibration parameters are proposed and investigated, and the 

analysis is carried out on two progressively damaged bridges, 

subjected to ambient and operational loading, respectively. The 

first bridge is the S101 bridge, a pre-stressed flyover near 

Vienna in Austria, and the second bridge is a simply supported 

steel truss bridge in Japan. It is demonstrated that many of the 

novel empirical vibration parameters are suitable for damage 

detection, localisation, and quantification. To achieve this, a 

suitably applicable vibration signal type is needed, and a 

suitable outlier detection method has to be chosen (which is 

based on the distribution type of the extracted vibration 

parameter).  

Similarly to the project by ESR7, António Barrias (ESR11) 

moves forward modern sensor technology for bridge condition 

assessment. In this case, Distributed Optical Fibre Sensing 

(DOFS), and more specifically, the Optical Backscattered 

Reflectometry (OBR) based system, is the subject of Chapter 

5. Different laboratory experimental campaigns are carried out 

to assess multiple aspects of the instrumentation of the DOFS 

technology. The latter include the study of new implementation 

methods, comparison and performance analysis of different 

bonding adhesives and spatial resolution, and also the long-

term performance. The technology is applied to two concrete 

structures in Barcelona, in Spain. The first application is at the 

historical and UNESCO world heritage site, Sant Pau Hospital. 

Due to the implementation of DOFS technology in this historic 

structure, it is possible to follow the developed strains due to 

the rehabilitation works, to ensure safety and to maintain the 

structure in operation. The second case is the Sarajevo bridge, 

and similar benefits are gained. The long-term effect of 

temperature variation and its compensation are also considered.  

Chapter 6 provides the outcomes of the project by Daniel 

Martínez Otero (ESR12), which deal with damage detection 

and localisation using deflection and velocity measurements 

from an instrumented vehicle, as opposed to direct 

measurements on the bridge employed in previous chapters. In 

his first contribution, curvature (the second spatial derivative of 

deflection) is proposed as a damage indicator, which is 

assumed to be measurable using drive-by measurements and 

Laser Doppler Vibrometers (LDV). Instantaneous Curvature is 

investigated as a means of finding a local loss of stiffness in a 

bridge using drive-by measurements. The use of LDVs is 

established in the Traffic Speed Deflectometer (TSD), a 

specialist truck instrumented with several LDVs, which is used 

for road pavement monitoring. In this project, this concept is 

explored for bridge damage detection. The Rate of 

Instantaneous Curvature (RIC) is introduced as a bridge 

damage indicator. It is shown that bridge damage is detectable 

by comparing the RIC measurements from healthy and 

damaged bridges, although the levels of accuracy needed 

suggest that it may not be commercially exploitable until the 

next generation of LDVs are installed. The second contribution 

relates to the direct calculation of bridge stiffness from 

deflection measurements. The bridge stiffness profile is 

obtained from drive-by measurements of deflection. However, 

a filtering method based on the Blackman window is proposed 

to remove noise, and a numerical case study is used to 

demonstrate the effectiveness of the method. The main novelty 

of this approach is that there is no need to measure random 

traffic axle weights to detect damage. This stiffness profile 

calculation qualifies for level 3 damage detection.  

The project of Federico Perrotta (ESR13) addresses in 

Chapter 7 how to reduce uncertainty in road pavement 

performance, through assessment of the impact of road surface 

characteristics, such as unevenness and macro-texture, on the 

fuel consumption of trucks. A Big Data approach is proposed, 

combining advanced statistics, data mining, and regression 

techniques. The method provides reliable estimates about the 

impact of road roughness and macro-texture that can support 

pavement engineers and road asset managers in their decisions. 

In-field data is provided by Microlise and TRL Ltd, containing 

records of thousands of trucks driving across the Strategic Road 

Network in England. The analysis of results shows that 

machine learning algorithms outperforms linear regression. 

Performing a parametric analysis is demonstrated to be a good 

way to partially interpret the results of machine learning 

algorithms, as its output graphs are easily readable and allow 

the identification of how fuel consumption varies in different 

situations. 

Finally, the project by Siyuan Chen (ESR14) applies 

Unmanned Aerial Vehicles (UAVs) and the photogrammetry 

method to road pavement and bridge inspections in Chapter 8. 

The aim of this project is to develop methods for associated 

data processing, quality evaluation, and damage extraction. It 

is shown that low price commercial UAVs have the capability 

to collect high-quality images, which can then be used for 3D 

documentation and damage detection. The Structure From 

Motion (SFM) method is proposed for the images, based on 3D 

point cloud generation. For the post-processing stage, 

automatic noise reduction and a damage segmentation method 

are also developed. The method is demonstrated on a number 

of in-field surveys, such as Wicklow road, Wicklow Bridge and 

the Boyne viaduct in Ireland. The proposed UAV inspection 

method offers a suitable alternative to visual inspections due to 

significant reductions in surveying costs.      

The ESRs also propose future research direction for their 

projects. Examples of these include: population of influence 

lines should be studied in addition to instantaneous lines, 

followed by spatial variation in deterioration and its detection 

(ESR8); vehicle induced excitation should be investigated so 

that the variability of loads can be adjusted (ESR10); the work 

of damage localisation using displacement and velocity 

measurements needs to be further tested on real highway 

bridges (ESR12); the method of on-road performance 

monitoring could be extended to the analysis of urban drive 

cycles and other vehicle types (ESR13). Overall, this report 

illustrates that the research carried over the three years of the 

TRUSS project is in line with the original objective of WP5 - 

to reduce uncertainty, improve structural assessments and 

management of transport infrastructure via the development of: 

• New monitoring (ESR13 and ESR14) /sensor (ESR11 and 

ESR12) technologies that will allow more efficient data 

collection, and 
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• new algorithms (ESR7, ESR9 and ESR10) that will 

process the data collected from a structure to estimate its 

safety (ESR8) more accurately than current approaches. 
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ABSTRACT: Bridges, connecting communities and serving as regional lifelines, are vital components of transport infrastructure. 

In most of the developed countries, the majority of bridges are nearing the end of their designed service life. Current bridge 

evaluation techniques are mainly based on visual and tactile inspections, which are qualitative and prone to errors due to the 

human factor. Therefore, bridge owners are particularly interested in accurate and innovative methods for assessing their aging 

structures, which is the main motivation behind this research project. In order to overcome the existing shortfalls in the bridge 

monitoring field, this project carries out extensive numerical analyses to develop cost-effective bridge monitoring solutions that 

will benefit the stakeholders. Subsequently, the developed methodologies are tested on real bridges through field testing 

campaigns. The results obtained from these testing campaigns are summarised within the scope of this chapter. 

KEY WORDS: Deflection monitoring; Rotation measurements; Field testing; Railway. 

1 INTRODUCTION 

Almost half of the UK’s bridges are built during the post-war 

period, hence, they are nearing the end of their design lives. 

Over time they are exposed to many degradation processes due 

to environmental factors and changing loading conditions. 

According to a recent investigation by the Royal Automobile 

Club (RAC) Foundation,  the number of substandard council-

maintained road bridges in the UK has risen 35% in just two 

years [1]. The resulting cost of clearing the backlog of work 

associated with the deterioration of the country’s bridge stock 

is estimated to be £5 billion. These substandard bridges do not 

only have a significant impact on the UK’s economy, but are 

also a threat to public safety. In the last five years alone, there 

have been several incidents. In December 2015, Forth Road 

Bridge, one of the busiest and most iconic bridges in Scotland, 

was closed to traffic after a crack was found in the steel support. 

The cause of the crack was identified as a pin that had corroded 

and seized at the end of the truss link, which over time led to 

overload and eventual failure of the link. A report to the 

Scottish Parliament stated that “only a high-tech structural 

health monitoring system could potentially have revealed the 

problem” [2]. The final bill for repairs was established at £16 

million, and the cost to the economy is estimated at £1 

million/day for the duration of the closure. Identifying possible 

structural defects on a bridge at an early stage is crucial in 

preventing such events and is the main motivation behind this 

research. 

This chapter presents the results of three bridge field testing 

campaigns. The first case study is conducted on a healthy but 

aging composite I-girder roadway bridge structure in Exeter, 

UK. The bridge is instrumented with strain sensors and loaded 

with a four-axle 32-tonne truck. The second field testing 

campaign is conducted on a historical railway bridge structure 

that experiences a vertical crack on its abutment wall. The third 

field testing campaign is performed on a new simply supported 

bridge structure in an attempt to validate the robustness of a 

novel axle detection system. 

2 CASE STUDY 1 – EXE NORTH BRIDGE FIELD TESTING 

Current bridge evaluation techniques are mainly based on 

visual and tactile inspections which are qualitative and fail to 

identify strength reserve capacity of a bridge. One of the main 

sources of strength reserve capacities in a bridge is associated 

with unexpected transverse load distribution factors of a bridge 

[3]. The purpose of this field testing is to obtain transverse load 

distribution factors of the Exe North Bridge from the measured 

strains. The test structure is a three-span simply supported 

bridge consisting of 12 main girders and carrying four traffic 

lanes. Figure 1 shows the elevations view of the bridge and the 

sketch of deck cross-section. 

 

Figure 1. Exe North Bridge: (a) Elevation view, (b) sketch of 

deck cross-section. 

ST350 model strain transducers are used to measure strains 

during the field testing. The sensors are attached on the soffit 

of the main girder. Due to the water constraints, the strain 

sensors are attached at quarter-span location. Figure 2 shows 

the sensor installation on the soffit of the main girder. 

Chapter 1: Development of innovative bridge field testing techniques - case studies  

Farhad Huseynov1,2, James M.W. Brownjohn1, Eugene J. OBrien2, David Hester4, Karen Faulkner3 

1Full Scale Dynamics LTD, Kay Building North Park Road, Exeter EX4 4QF, UK  
2School of Civil Engineering, University College Dublin, Richview Newstead Block B, Belfield, Dublin 4, Ireland 

3Vibration Engineering Section, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park 

Road, Exeter EX4 4QF, UK 
4School of Natural and Built Environment, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG, 

UK 

email: f.huseynov@fullscaledynamics.com, j.brownjohn@ fullscaledynamics.com, eugene.obrien@ucd.ie, 

d.hester@qub.ac.uk, kf312@exeter.ac.uk 

mailto:eugene.obrien@ucd.ie
mailto:d.hester@qub.ac.uk


                                                                                                                                                                     D5.2 - Final Report 

 

8 

 

 

 

Figure 2. Sensor installation: (a) ESR installing sensors on the 

soffit of the main girder, (b) close view of the installed sensor. 

The test is carried out overnight to avoid public traffic 

disruption. During the testing, the bridge is loaded with a 32 

tonnes four-axle truck that remains stationary for 

approximately 45 seconds at each lane. In total, the bridge is 

loaded 16 times; 4 times at each lane. Figure 3 shows the test 

vehicle while it is stationary positioned on Lane 4.  

 

Figure 3. Four-axle 32 tonnes test vehicle. 

Figure 4 presents a typical strain time history recorded for the 

different sensors during the test. Obtaining transverse load 

distribution factors of a bridge is vital information in bridge 

assessment activities. It is a measure of the transverse 

distribution of load through the structure. Bridges are typically 

designed in such a way that traffic load is distributed between 

girders as fairly as possible so as not to overstress any particular 

load carrying member. Therefore, the transverse load 

distribution factors play a very important role in the load 

carrying assessment of a beam-and-slab bridge. 

 

Figure 4. Typical strain time history 

In this investigation, transverse load distribution factors are 

calculated dividing the average strain measured on the soffit of 

a girder by the total sum of the average measured strains of all 

girders. Figures 5(a) and (b) show the average strains recorded 

at each girder for each lane loading and the corresponding 

calculated transverse load distribution factors, respectively. 

 

Figure 5. Results of the field testing: (a) Average strains 

recorded on the soffit of girder at quarter-span location while 

the truck remained stationary at each lane, (b) calculated 

transverse load distribution factors. 

3 CASE STUDY 2 – FIELD TESTING ON A HISTORICAL 
RAILWAY BRIDGE 

The test structure investigated in this section is a historical 

railway bridge built in the 1870s and located in Somerset, UK. 

The bridge is a 14.8 m long single span simply supported steel 

bridge. The deck consists of two cast iron main girders carrying 

a single railway track, and the route is predominantly serviced 

by steam-powered locomotives. The heaviest locomotive 

running on the line weighs 76.4 tonnes with a single axle load 

of 17 tonnes. Figure 6 shows the elevation view of the test 

structure. 

 

Figure 6. Elevation view of the test structure. 
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The bridge is supported by two masonry type abutments 

skewed by 60 degrees. The abutments consist of the main wall 

and two integrated wing walls. The height of the main and wing 

walls above the ground surface is approximately 5 m and 3.8 

m, respectively. 

During the latest visual inspection, the structural condition of 

the bridge is deemed to be sufficient to carry the normal daily 

traffic however, some defects are found on the abutment 

structure. Although it does not pose a danger to normal traffic, 

the wing wall of the abutment structure exhibit some vertical 

cracks running the full height of the wing wall approximately 2 

m from the face of the abutment. Figure 7 shows the vertical 

crack on the abutment wing wall. 

 

Figure 7. Vertical crack on the abutment wing wall. 

The main objective of this research is threefold. The first 

objective is to monitor the crack movement on the abutment 

wing wall under train loading. The second objective is to 

measure rotations on the deck structure using accelerometers 

for academic purposes. Finally, the last objective is to 

determine deck deflections using measured rotation responses. 

 Monitoring abutment wall crack movement 

The crack movement on the wing wall structure is monitored 

using three Imetrum camera systems, which use image 

processing to accurately measure structural deformations. Two 

of the Imetrum cameras are used to monitor the crack 

movement of the wing wall in three dimensions. One camera is 

placed pointing perpendicular to the wing wall (Y direction) 

whereas another camera is set up parallel to the wing wall (X 

direction). Two L-shaped (X-Z and Y-Z planes) optical targets 

are mounted on the abutment structure on both sides of the 

crack line (being Test Point 1 (TP1) and Test Point 2 (TP2) in 

Figure 8) to track X, Y, Z movement for each of the two targets 

using two cameras pointing from both directions. The targets 

installed on the wing wall are 150 x 150 x 5 mm steel angles 

and have optical targets attached to them. The angles are 

attached to the wing wall using epoxy glue. The third camera is 

pointed to deck midspan to measure the midspan deflection. 

The results for the deck structure are presented in the following 

section. Figure 8 shows the wide-angle view of the test setup at 

the bridge site. 

 

Figure 8. View of the test layout. 

Figure 9 shows the recorded X, Y and Z movements on both 

sides of the crack while a steam locomotive crossed the bridge 

site. The left-hand column of Figure 9 shows the X, Y and Z 

movement of Test Point 1 and the right-hand column shows the 

corresponding results for Test Point 2.  

 

Figure 9. 3-D movement on both sides of the crack due to the 

passage of a steam locomotive. 

From Figure 9, it is clearly visible that the abutment wall is 

moving under train loading with the dominant direction of 

movement being in the bridge longitudinal direction (X). The 

maximum magnitudes of deformations recorded during the 

field testing are 0.4 mm and 0.15 mm in longitudinal (X) and 

vertical (Z) directions, respectively. It is observed that the left 

side of the crack (TP1) moves significantly more than the 

opposite side of the crack. The wall movement is cyclic, and 

the magnitude of the movements appears to be approximately 

in proportion to the magnitude of the load. 
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 Rotation measurements using accelerometers and 
deflection calculations 

Inclinometers are the most common sensors used to measure 

the angle of rotation of an object, but can only be used to 

measure the rotation with respect to gravity. For this 

investigation, a single axis of acceleration is used to determine 

the angle of rotation instead of inclinometers. The rotation is 

determined by projecting the gravity vector on the axes of 

acceleration. Figure 10 shows five accelerometers placed in the 

horizontal direction at two supports, quarter-, mid- and three-

quarter span locations. 

 

Figure 10. Accelerometers placed on the top flange of the 

main girder. 

A novel methodology is developed for measuring rotation from 

the recorded accelerations. Figure 11(a) shows the measured 

acceleration response due to a passage of a steam locomotive. 

Rotations obtained from the measured acceleration response 

are presented in Figure 11(b). The first peak in the plot, which 

also has the maximum amplitude, represents the passage of the 

locomotive. The following 8 peaks, that are smaller in 

magnitude, correspond with the passage of 8 carriages. 

 

Figure 11. Results from accelerometers: (a) Recorded 

acceleration time history at the support location, (b) calculated 

rotations from measured accelerations. 

Deflection is a damage sensitive parameter, hence, any change 

in bridge structural condition results in a change in deflection 

measurements. Therefore, measuring deflection on a bridge 

could provide useful information regarding the performance of 

the structure. Here, the methodology developed by Helmi et al 

[4] is applied to calculate the deflection of the bridge from its 

rotation response. Figure 12 presents the deflection-time 

history recorded during the field testing. The red plot with 

circular data markers is obtained using the rotation response 

measured by accelerometers. The blue plot is recorded using 

the Imetrum camera system pointed to the optical target at the 

bridge midspan location. It is clearly visible from Figure 12 that 

measured deflection using accelerometers matches very well 

with the corresponding results obtained from the Imetrum 

system.  

 

Figure 12. Deflection time history obtained from 

accelerometers and Imetrum camera system. 

4 WILLITON BRIDGE FIELD TESTING 

This section explains the outcomes of a field testing carried out 

on a simply supported steel railway bridge in an attempt to 

validate the robustness of a novel axle detection system 

developed within the scope of this project. Section 4.1 

describes the theoretical basis of the proposed methodology 

and Section 4.2 presents the results of the field testing. 

 Theoretical basis 

This section develops the theoretical basis for the proposed axle 

detection concept. Initially, numerical analyses are carried out 

on a 1-D simply supported bridge structure to obtain a strain 

response of the bridge model due to a moving 2-axle vehicle. 

The hypothetical structure is modelled as a 5.1 m long simply 

supported steel bridge. The elastic modulus and second 

moment of area are as assumed to be 210 GPa and 1.23×109 

mm4, respectively. The axle weights of the moving vehicle are 

taken as 3.5 tonnes, spaced by 2.6 m. The vehicle travels over 

the bridge at a speed of 4 m/s. Approach spans, 4 m long, are 

located at the entrance and exit of the bridge. A hypothetical 

sensor is placed at 1.1 m from the left-hand support location to 

‘record’ the strain response of the bridge due to the moving 

vehicle loading. Figure 13 shows a sketch of the 1-D bridge 

model, axle configuration of the moving vehicle and the 

location of the strain sensor. 
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Figure 13. Sketch of the 1-D simply supported bridge model. 

Figure 14(a) presents the strain-time history obtained from the 

numerical model due to the two-axle moving vehicle loading. 

The black curve shows the total response of the structure, while 

the red and blue dashed curves represent the contributions of 

the individual axles. 

The proposed axle detection concept is based on the second 

derivative of the strain time history signal with respect to time. 

The strain time history function due to the moving multi-axle 

loading is a first order conditional polynomial. The first 

derivative of the first order conditional polynomial with respect 

to time becomes discontinuous at the points where axles arrive 

or depart from the bridge or pass the sensor location. The red 

plot in Figure 14(b) depicts the corresponding results obtained 

from the first derivative of the strain time history. 

Discontinuous functions are not differentiable at locations 

where there is a lack of continuity so the first derivative of the 

strain signal with respect to time is taken as continuous. The 

dashed blue lines in Figure 14(b) represent the corrections to 

re-establish the continuity of the signal. 

 

Figure 14. (a) Moment-time history obtained at the 

hypothetical sensor location, (b) first derivative of moment 

with respect to time, (c) second derivative of moment with 

respect to time. 

Having observed the discontinuity feature in the first derivative 

of the strain response with respect to time, it is proposed that 

the second derivative of the strain signal with respect to time, 

will smooth out the constant part of the function. At locations 

where the first derivative of the function would normally 

become discontinuous, this will result in peaks that will identify 

axle locations. 

The corresponding results obtained by differentiating the 

strain signal twice are presented in Figure 14(c). There are four 

positive and two negative peaks observed in this plot. The 

positive peaks correspond to the time when an axle enters or 

exits the bridge, whereas negative peaks occur when each axle 

passes the sensor location. Since the hypothetical sensor is 

placed on the left-hand side of the bridge, the magnitude of 

peaks when an axle arrives on the bridge is greater than the 

magnitude when it leaves the structure. 

 Field testing 

The test structure is a single span simply supported steel 

railway bridge located in South West England, UK. The bridge 

is 5.1 m long and consists of two main girders placed 1505 mm 

apart. The connection between the bridge deck and abutments 

consists of laminated elastomeric bearings designed to allow 

free span movement in the bridge longitudinal direction. The 

bridge is located approximately 50 m away from a train station 

and carries a single track which rests on top of the main girders. 

Figure 15 shows a photograph of the test site. 

 

 

Figure 15. Photograph of the test site (in foreground). 

The test structure is instrumented with a strain transducer at 1.1 

m from the support location on the train station side of the 

bridge to record strains under train loading. Figure 16(a) shows 

the location of the test point and Figure 16(b) shows a 

photograph of the strain sensor installed on the bridge. 

 

Figure 16. (a) Sketch of the test structure depicting sensor 

location, (b) strain transducer installed on the bridge. 
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The strain data are recorded while a British Class 115 Diesel 

Multiple Units (DMU) type train crosses the bridge. The train 

consists of three sets: Two Driving Motor Brake Second 

(DMBS) cars which are located at the front and rear and a 

Trailer Composite with Lavatory (TCL) type carriage located 

in the centre. Each set consists of 2 bogies, and each bogie has 

2 axles spaced at 2.6 m, adding up to 12 axles in total for the 

full set of cars. Figure 17 shows a sketch of the DMBS and TCL 

cars and the British Class 115 type train crossing the test 

structure. 

 

Figure 17. (a) Sketch of the DMBS car, (b) sketch of the TCL 

car, (c) British class 115 train crossing the test structure. 

The strain-time history obtained in response to the British Class 

115 type train loading is presented in Figure 18(a). There are 6 

peaks in the strain signal, which correspond to the passage of 

the 6 bogies across the length of the test structure. The strain 

signal obtained under train loading is differentiated twice to 

identify the presence of axles, and the corresponding results are 

presented in Figure 18(b). As described in the previous section, 

positive peaks show the time when an axle enters or leaves the 

bridge, whereas negative peaks correspond with times when an 

axle passes the sensor location. Looking at the negative peaks 

first, there are twelve in total, which identify the time instants 

when axles are at the sensor locations. 

Among the positive peaks, the ones with higher amplitude 

show the time instants when axles enter the bridge. There are 

12 peaks identified in Figure 18(b) which are marked with solid 

black circle markers. The remained positive peaks (blue solid 

circle markers in Figure 18(b)) correspond with time instants 

when an axle leaves the bridge structure. Since the magnitudes 

of negative peaks when axles are leaving the structure are much 

less than the corresponding peaks when axles enter the bridge, 

for some axles, such as axles 3-10, it is not possible to 

accurately identify the time when they are leaving the structure. 

 

Figure 18. (a) Strain time history recorded under train loading, 

(b) second derivative of strain measurements with respect to 

time. 

5 CONCLUSIONS 

This chapter has presented the results from three field testing 

campaigns. The first case study has been conducted on a three-

span composite simply supported bridge structure to obtain the 

transverse load distribution factors of the deck structure. The 

second case study has investigated the structural behaviour of 

a historical railway bridge loaded with steam locomotives. 

Within the scope of the field testing, the crack movement has 

been monitored on the abutment wall of the structure using an 

Imetrum camera system. The results have showed that by using 

image processing techniques, it is possible to obtain tiny 

deformations on the masonry wall in three dimensions. 

Besides, accelerometers have been placed on the deck structure 

to measure rotations and eventually obtain deck deflections at 

midspan location. Also, by using the methodology described in 

this chapter, it has been possible to calculate deflections 

accurately. The last field experiment has tested the robustness 

of a novel axle detection system, which is based on the second 

derivative of the strain signal. It has been demonstrated that the 

second derivative of strain signal results in peaks related to the 

presence of an axle. 
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ABSTRACT: This research project is motivated by the actual challenges in bridge inspection and maintenance planning and in 

estimating the actual and future safety level of bridges. It is searching for alternative ways of bridge health monitoring and damage 

detection and how these methods can be integrated into a bridge safety model or in bridge maintenance strategies. In a first 

contribution, a Bayesian framework is presented for better estimation of the corrosion loss in reinforced concrete bridges with the 

use of damage indicators based on different sensor measurements. In a second contribution, field data recorded in ambient traffic 

conditions are used for the proposed damage indicators. The effectiveness of these damage indicators is validated with 

simultaneously recorded temperature data. A third contribution is about finding the influence line of a structure based on field 

data recorded in ambient traffic conditions and without the need of pre-weighed trucks and/or a finite element model of the 

structure. 

KEY WORDS: Bridge; Reliability; Damage indicator; Bayesian; Structural Health Monitoring (SHM); Deterioration; 

Maintenance. 

1 INTRODUCTION 

Bridges are particularly important assets of transport 

infrastructure due to their functionality, economic value as well 

as for their contribution to the landscape. Owners and managers 

are urged to find the best solution for deploying available 

sources efficiently, with the least possible social and 

environmental impact. On the other hand, the serviceability of 

assets and the safety of users have to be ensured. Bridge 

management is, therefore, an important and complex subject. 

One of the key issues is to estimate the current and future health 

state of bridges as accurately as possible, taking into account 

all relevant uncertainties. 

Traditionally visual inspections, sometimes combined with 

non-destructive tests (NDT), are used in order to have a better 

understanding of the health state of bridges and thus to 

determine the optimal timing for more detailed and 

instrumented inspections, maintenance actions or, in extreme 

cases, replacement. Various NDT methods exist [1]. These 

often focus on the material properties of the structure, such as 

the strength of concrete [2] or the chloride ingress in concrete 

[3]. However, these NDT methods are not practical and not 

reliable enough for long-term monitoring of structures exposed 

to loading and deterioration with a high level of uncertainties. 

In a small but increasing number of cases, health monitoring 

systems are installed on bridges, which seek to identify any 

anomalous behaviour of the structures. Among these, vibration-

based health monitoring systems are particularly preferred for 

bridges [4]. There is a significant amount of research going on, 

that focuses on processing the measurement data, extracting the 

relevant information and building an appropriate framework in 

which the obtained data can effectively be used for damage 

detection or for determining the global health state of the 

bridge. However, there is a gap between research and industrial 

application in this field, mainly due to the high associated costs 

of Structural Health Monitoring (SHM) systems (installation, 

road closure, maintenance, etc.) and the small number of 

validated and working real-life examples. This issue is targeted 

by an on-going COST Action [5], which strives for quantifying 

and evaluating the value of SHM systems for improving the 

decision basis for design and maintenance of structures. 

This research project aims at proposing and comparing 

damage indicators based on different sensor measurements 

while introducing a Bayesian framework to better estimate 

bridge deterioration (Section 2). It also aims at proposing an 

alternative validation for such damage indicators using the 

temperature sensitivity of reinforced concrete structures 

(Section 3). Finally, it aims at demonstrating an innovative 

method for finding the influence line of the bridge based on 

sensor measurement under ambient traffic conditions, which 

can also be used for damage detection (Section 4). 

2 UPDATING PROBABILITIES OF BRIDGE REINFORCEMENT 
CORROSION USING HEALTH MONITORING DATA  

 Damage indicators 

Six Damage Indicators (DIs), based on various SHM systems, 

are considered in this contribution. The damage indicators are 

established within a probabilistic context, assuming ambient 

traffic conditions during the measurement and therefore 

assuming no (or minimal) restrictions during the times of 

measurement. The damage indicators considered are based on 

(a) strain measurement, (b) deflection measurement, or (c) 

rotation measurement. For each sensing type, two measures are 

investigated here, that can be defined as follows: 

• Average value of the area under the response signals 

corresponding to single truck crossing events: 

Chapter 2: Probabilistic modelling of bridge safety using damage indicators 
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 𝐷𝐼𝑎 =
∑ ∫ 𝑓𝑖(𝑥)

𝑠𝑖
0 𝑑𝑥𝑛

𝑖=1

𝑛
 (1) 

where fi(x) is the signal of the ith truck, si is the length of this 

signal in [m], and n is the number of trucks/signals considered. 

• Average value of the maximum of the response signals 

corresponding to crossing events: 

 𝐷𝐼𝑝 =
∑ max

𝑗=0…𝑠𝑖
(𝑓𝑖(𝑥))⁡

𝑛
𝑖=1

𝑛
 (2) 

The averaging can be done based on the number of trucks or 

based on a time period. For example, average over 100 trucks 

or average over 2 hours of (daytime) traffic. 

 Updating the information of corrosion 

Corrosion is the principal deterioration process for Reinforced 

Concrete (RC) structures. Corrosion modelling, however, 

involves a great deal of uncertainty and depends on different 

variables, which are particularly hard to obtain with a high level 

of confidence and which vary with time. At the time of bridge 

inspection, it is assumed that the age of the bridge is known and 

therefore, applying the stochastic corrosion model, some 

estimate of the prior knowledge on actual reinforcing bar area 

loss can be obtained. In this project, Monte Carlo simulation is 

used to obtain the empirical distribution of residual reinforcing 

bar area at a given time instant. Afterwards, using well-

established distribution fitting techniques (e.g. moments 

method or maximum likelihood method), one can find the 

distribution and parameters that best fit the simulated data at a 

time instant. This fitted distribution can be then used as the 

prior distribution for the updating process. 

Applying Bayes' theorem, it is possible to improve the prior 

model by incorporating newly obtained health monitoring data. 

The prior distribution, in this case, is the probability density 

function of reinforcing bar area loss due to corrosion and the 

new data comes from damage indicators.  

 The methodology and the example application 

The proposed methodology for estimating bridge safety and 

plan the maintenance regime can be seen in Figure 1. In the 

example application, different corrosion levels are taken into 

account in order to link the calculated DI values with the level 

of corrosion. To obtain this correlation between DI and 

Reinforcement Area Loss (RAL) due to corrosion, simulations 

on a simply supported beam model are conducted (see Figure 

2). 

In this example application, the time of inspection is fixed at 

year 40, which is used for the stochastic corrosion modelling to 

obtain the a priori distribution of the reinforcement area loss. 

The true value of reinforcement area loss has to be determined 

as well. This value is used to simulate the ‘measured’ signals 

and hence to obtain the DI values. It is also used as a reference 

for comparing the final results with. 

The measured signals under ambient traffic conditions are 

obtained through simulations using a Weigh-In-Motion (WIM) 

database of truck properties and a simply supported RC beam 

model. The quality of the measurements may vary for the 

different cases and therefore measurement-dependent 

uncertainty is introduced in the model by adding white noise to 

the calculated signals. Based on these signals, 6 different DIs 

are defined (see Table 1). The objective for all DIs is to provide 

a means of updating the safety evaluation of the bridge, i.e., in 

this case, the estimation of the reinforcement area loss. 

 

 

Figure 1. Flowchart of the proposed methodology. 

 

Figure 2. Trends in DI3-p for reinforcement area loss (RAL) 

between 0 and 50%. 

Table 1. Damage indicators investigated 

Damage Indicator Measurement Signal attribute 

DI1-a Strain Area under signal 

DI1-p Strain Peak value of signal 

DI2-a Deflection Area under signal 

DI2-p Deflection Peak value of signal 

DI3-a Rotation Area under signal 

DI3-p Rotation Peak value of signal 

 

The updated and prior estimates of reinforcement area loss can 

be compared, for example, based on the obtained mean value 

of RAL, as per Figure 3. It can already be seen from this figure 

that rotation measurements show particular promise (i.e., DI3-

p). This conclusion is strengthened based on the further 

examination that can be found in [6]. It must be noted that using 

the presented Bayesian framework, it is possible to compare 

and evaluate different SHM systems. 
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Figure 3. Mean values of the posterior distributions (mean +/− 

SD) for each DI, when the actual RAL= 30%. 

3 BRIDGE DAMAGE INDICATOR BASED ON SENSOR DATA IN 
AMBIENT TRAFFIC CONDITIONS 

 Validation of damage indicators with temperature data 

To test damage indicators and to prove that they are sensitive 

to stiffness change, in an alternative way, temperature 

measurement is used in this study. The temperature of the 

structural elements, and so indirectly of the air, has a small but 

measurable effect on Young’s modulus of concrete [7-10]. 

Hence, when temperature changes, the stiffness of the structure 

changes as well. The effect of temperature change on 

reinforced concrete’s modulus of elasticity, assuming that the 

temperature stays in the range of 0 to 30°C, can be expressed 

using a linear equation as follows [10]: 

 𝐸𝑇 = 𝐸20 ∙ (1 + 𝛽 ∙ ∆𝑇) (3) 

where ET and E20 are Young’s modulus of concrete at 

temperature T and 20°C, respectively, β is the thermal 

hardening coefficient of concrete and ΔT is the difference 

between T and 20°C. For the thermal hardening coefficient, 

different values can be defined based on the data reported in the 

literature [7-10], see Table 2. 

Table 2. Different β values based on the literature. 

Thermal hardening coefficient: β Reference 

-0.00165 [8] 

-0.00275 [10] 

-0.00290 [9] 

-0.00300 [7] 

 

 Data for the case study 

The data available for this study is collected from a highway 

culvert in Slovenia, near Ljubljana (see Figure 4). It is a RC 

structure, carrying 2 lanes and a hard shoulder in each direction 

and a duct. The length of the bridge is 6.5 metres, the total width 

of the structure is 32.3 metres. Both the deck and the walls are 

made from the same grade of concrete (C25/30), the foundation 

is however made from C16/20 concrete. 

Originally the bridge was equipped with SiWIM Weigh-in-

Motion system [11] for the purpose of weighing passing trucks. 

This consists of strain transducers located at midspan across the 

width of the bridge, which are used to calculate the axle weights 

of the passing trucks. Additional strain sensors are placed at the 

quarter points in each lane to detect axles and hence to 

determine axle spacing and vehicle speed. Temperature sensors 

are also installed on the structure. Therefore, the temperature 

data of the deck is recorded simultaneously with the strain data. 

 

 

Figure 4. View of the case study bridge. 

In the case study, the two DIs defined by Equations (1) and (2), 

are calculated based on the strain signals recorded under the 

slow lane. An example of a post-processed signal can be seen 

in Figure 5. The sum of the signals for the four sensors in this 

lane can be seen in this figure too. Summing up various signals 

can help to reduce the influence of the truck’s transverse 

position. The database of the signals is split into several parts 

depending on the temperature. Each subpart of the data then 

corresponds to a narrow temperature band of 2°C, from −2°C 

to 30°C. 

Figure 5. Measured signals during a slow lane single truck 

crossing event of a 5-axle truck. 

 Results of the case study 

In Figure 6, for each temperature range, the mean +/- one 

standard deviation of DIa (DI calculated with Equation (1)) are 

plotted. The sample size of DI is around 100, depending on the 

available data for each interval. Although the trend of DI with 

temperature is clear, the spread of the result (i.e., the standard 

deviation) in each interval is still significant. This is not 

surprising given the diversity in the truck population. The 

correlation between DI and temperature is positive from 0°C 

until about 20°C and negative beyond 20°C. A similar trend is 
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found by [12] in the relationship between temperature and the 

calculated Gross Vehicle Weights (GVW) from this bridge 

WIM system. The obtained correlation between temperature 

and DI proves that the proposed DI are indeed sensitive to 

stiffness change in the structure, therefore, they can potentially 

be used for damage detection. 

 

Figure 6. Mean +/− one standard deviation of DIa versus 

temperature.  

The simultaneously recorded temperature data can also serve 

for improving a damage detection tool based on the presented 

DIs. An alternative way for the bridge damage alerting system 

is proposed here, by applying a method to detect outliers of the 

temperature dependent DI distributions. The modified Z-score 

[13] can be used to identify potential outliers, based on a 

calculation of the median of a reference sample: 

 𝑀𝐷𝐼 =
0.6745(𝐷𝐼−𝐷𝐼̃)

median(|𝐷𝐼𝑖−𝐷𝐼̃|)
 (4) 

where DI is the newly obtained damage indicator value that is 

investigated, 𝐷𝐼̃ is the median of the damage indicator sample 

and DIi are the individual values in the damage indicator 

sample. This DI sample is collected during a reference period. 

Therefore the method’s reliability would depend on the 

available data, i.e., the length of this reference period. The 

longer the reference period is, the more data can be collected 

and the better the reliability of the method will be. In this case 

study, two years of data is used.  

The higher the absolute value of the modified Z score is, the 

more probable it is that the measured point does not belong to 

the original damage indicator sample, i.e., it is more probable 

that something other than temperature is modifying the bridge’s 

response and so the DI. Figure 7 shows an example risk map 

for the case study bridge associated with the calculated 

modified Z-score. It can be seen how simultaneously measured 

temperature data can help to enhance the damage detection 

tool, when comparing, for example, the thresholds at 5°C and 

at 20°C. 

 

Figure 7. A proposed risk map prepared for DI1 = DIa (5-axle 

trucks only) based on modified Z-scores. 

4 MONITORING CHANGE IN THE SHAPE OF THE INFLUENCE 
LINE OF THE BRIDGE TO ESTIMATE BRIDGE SAFETY  

 Theory 

In this contribution, an algorithm is presented that aims at 

finding the influence of the bridge together with the axle 

weights of the passing truck(s). This algorithm combines 

Quilligan’s method [14] to calculate the influence line and 

Moses’ method [15] to calculate the axle weights of the passing 

vehicles in parallel. Moses’ algorithm searches for the Q vector 

of the axle weights that is possible to be found by solving the 

following equation: 

 {𝑄} =
[𝐼𝐿]𝑇{𝑥𝑚(𝑡)}

[𝐼𝐿]𝑇[𝐼𝐿]
 (5) 

where (xm) is the measured response, and [IL] is the matrix of 

the influence line ordinates. Equation (5) is the basis of B-WIM 

calculations and is the first part of the combined iterative 

method introduced in this contribution.  

Quilligan [14] defines the matrix equation to calculate, based 

on the same principles as Moses’ algorithm, the influence line 

ordinates given the measured response and the axle weights of 

a passing calibration vehicle. He proposes the solution in a 

matrix form that can be used independently from the number of 

axles of the vehicle. This solution of the influence line ordinates 

can be expressed as follows: 

 {𝐼𝐿}𝐾−𝐶𝑁,1 = [𝑄]𝐾−𝐶𝑁,𝐾−𝐶𝑁
−1 {𝑀}𝐾−𝐶𝑁,1 (6) 

where [Q] is a symmetric matrix dependent on the axle 

weights,{M} is a vector dependent on the axle weights and the 

measured response, K is the total number of scans of the 

response signal and C is a vector containing the cumulative 

sums of the axle spacings expressed in scan numbers (starting 

from C1 = 0). Hence, CN is the total number of scans 

corresponding to the wheelbase of the vehicle. 

The idea here is to iteratively apply the two different 

algorithms on the recorded signal until convergence is reached. 

This way, it is possible to obtain the shape of the influence line 

as well as the relative load distribution of the trucks based 

solely on measurement data. In order to verify the method and 

to see if the results are reliable, different tests are conducted. 

However, one straightforward test is to evaluate the fit between 

the measured and the calculated, theoretical signal by 

computing the coefficient of determination, i.e., the r2 value. In 
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this contribution, it is also tested how temperature correlates 

with the calculated relative average truck weights. This is done 

in order to see if this value can potentially be used as damage 

indicator.  

 Case study results 

The data used for this study is the same as described in the 

previous section. The iterative method is, therefore, applied to 

the strain measurement data of the culvert. Due to the effect of 

the culvert-soil interaction, it is decided to include in the 

influence line some metres before and after the bridge itself. 

The preliminary shape of the influence line (which is needed to 

commence the iterative method) is defined as a triangle along 

the bridge with two ‘zero-tail’ zones before and after the bridge. 

The total length of the influence line is set to 17 metres. 

The calculated ‘theoretical’ signal using the obtained 

influence line and load distribution can be compared to the 

measured signal. Computing r2 values of the two signals (the 

closer to 1, the better) is one way to quantify the quality of the 

method. Figure 8 shows the results of an example truck. The 

dashed line represents the measured signal while the 

continuous line corresponds to the calculated one. The five thin 

continuous lines are the individual responses of the five axles 

of the truck. The r2 value, in this case, is 0.998, reflecting the 

very good fit.  

Figure 8. Comparison of the calculated truck response (the 

individual axle responses are marked with thin lines) with the 

measured response. 

The iterative method is applied to the trucks’ signals of each 

subset within a temperature range. The original sample size 

consists of 10000 trucks for each temperature range. However, 

all the cases with convergence problems are filtered out. The 

resulting final sample size and the average r2 values, depending 

on the temperature range, can be found in Table 3. These 

average r2 values suggest that the method works well and that 

an instantaneous IL can be found for the structure with high 

confidence. However, the number of cases when convergence 

cannot be reached (about 20%) also suggests that the method is 

very sensitive to the quality of the input signal.  

Figure 9 presents the mean calculated relative GVW of a 

general population and of a population of 5-axle trucks only. 

As the average GVW of a population of trucks is not expected 

to vary with the temperature, it can be concluded that the 

observed variation is due to the variation of the structural 

behaviour that is sensitive to the temperature change. This 

suggests that the mean calculated relative GVW can be also 

used to detect stiffness change in the structure due to damage. 

It can be also seen that focusing on 5-axle trucks only, results 

in a smoother curve, i.e., a more robust relationship between 

calculated GVW and temperature. 

Table 3. Sample size and average r2 value for each 

temperature range considered. 

Temperature 

range [°C] 

Sample 

size 

r2 values 

0-2 7945 0.9984 

2-4 7937 0.9983 

4-6 8131 0.9984 

6-8 8057 0.9984 

8-10 7904 0.9983 

10-12 7891 0.9984 

12-14 7902 0.9983 

14-16 7843 0.9983 

16-18 8060 0.9983 

18-20 8072 0.9982 

20-22 8050 0.9983 

22-24 8097 0.9983 

24-26 8034 0.9981 

26-28 8138 0.9982 

28-30 8165 0.9980 

 

 

Figure 9. Mean relative GVW plotted against temperature for 

a population of general trucks and of 5-axle trucks. 

5 CONCLUSIONS 

This research project has consisted of three main contributions 

within the fields of bridge safety and bridge health monitoring. 

A Bayesian framework that can be used to better estimate 

bridge safety with the use of measurement data has been 

developed. This framework is equally appropriate to compare 

different SHM systems. Damage indicators have been validated 

based on bridge strain data and simultaneously recorded 

temperature data. For bridge managers, a risk map has been 

proposed that can incorporate the information of strain and 

temperature measurement and can help in decision making. The 
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last contribution has used an iterative approach for obtaining 

the instantaneous bridge influence line shape and relative axle 

weights of passing trucks. The mean GVW of these passing 

trucks has good potential for damage detection and it has been 

validated against temperature data.  

In the on-going research, the so-called population influence 

lines are being studied in order to obtain, with the iterative 

approach, not only instantaneous but more general influence 

lines. A deeper investigation into the spatial variation of 

deterioration of bridges and how it influences damage detection 

is planned.  
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ABSTRACT: The European transportation network is ageing continuously due to environmental threats, such as traffic, wind and 

temperature changes. Bridges are vital assets of the transportation network, and their safety and availability need to be guaranteed 

in order to provide a safe transportation network to passenger and freight traffic. At the same time, a reduction of the whole life 

cost of the bridge is required due to the limited amount of maintenance budget that is available to bridge owners. The aim of this 

project is to develop Structural Health Monitoring (SHM) strategies, in order to monitor the health state of a bridge continuously. 

Damage of the bridge infrastructure is required to be identified and diagnosed, by taking account of the interdependencies between 

different elements of the bridge. In this way, early detection of the ongoing degradation of the bridge can be achieved, and 

consequently, a fast and cost-effective recovery of the optimal health state of the infrastructure can be obtained. For this purpose, 

five condition monitoring and damage diagnostics methods are developed: i) a Bayesian Belief Network (BBN), which has been 

verified on two Finite Element Models (FEMs), by defining the Conditional Probability Tables (CPTs) using an expert knowledge 

elicitation process; ii) a data analysis methodology that relies on the definition of Health Indicators (HI) of the bridge element, 

which has been tested on two in-field bridges, a steel truss bridge, and a post-tensioned concrete bridge, that were subject to a 

progressive damage test; iii) a machine learning method for assessing the health state of bridges automatically, by adopting a 

Neuro-Fuzzy Classifier (NFC), which has been applied to a post-tensioned concrete in-field bridge; iv) a method to continuously 

update the CPTs of the BBN by considering the actual health state of the bridge elements and the knowledge of bridge engineers; 

the method has been verified on the post-tensioned concrete in-field bridge; v) an ensemble-based change-point detection method, 

to analyse database of past unknown infrastructure behaviour for identifying the most critical change of the health state of the 

infrastructure; the method has been applied to a database of tunnel behaviour, which was subject to renewal activities. 

KEY WORDS: Bayesian Belief Network (BBN); Machine learning; Neuro-Fuzzy neural network; Structural Health Monitoring 

(SHM); Health Indicator (HI); Empirical Mode Decomposition (EMD); Genetic Algorithms (GA); Bridges. 

1 INTRODUCTION 

More than one million highway and railway bridges are present 

on the European transportation network [1]. These assets are 

continuously deteriorating due to aging, traffic load, and 

environmental effects such as strong wind and changing 

temperatures. Time-consuming and expensive visual 

inspection techniques are widely adopted to assess the health 

state of bridges, at fixed time intervals, ranging from one to six 

years. In order to overcome the limitations of visual 

inspections, SHM methods are used to assess the health state of 

bridges accurately, remotely and continuously, by relying on 

the analysis of static and dynamic responses of the 

infrastructure. Therefore, SHM methods are needed to detect 

ongoing degradation promptly. Such information can help in 

developing an optimal maintenance schedule, which can help 

to minimize the whole life-cycle cost of the asset [2]. At the 

same time, SHM methods, which are able to detect and 

diagnose sudden and unexpected changes of the infrastructure 

health state (i.e., damage of the infrastructure), are needed to 

guarantee the safety and reliability of the asset [3].  

SHM methods rely on model-based and non-model-based 

strategies. The former assesses the health state of a bridge, by 

comparing the behaviour of the in-field bridge with the 

expected results provided by a FEM of the bridge; the latter 

assesses the health state of the bridge by analysing the 

measured behaviour of the in-field bridge directly. However, 

model-based methods, such as FEM updating methods [4], 

require a complex and time-consuming procedure to develop 

an accurate FEM. As a consequence, continuous condition 

monitoring might not be achieved. In contrast, non-model-

based methods, such as Artificial Neural Networks (ANNs) [5], 

Principal Component Analysis (PCA) [6], supervised and 

unsupervised clustering techniques [7], show promising results 

for continuous condition monitoring of bridges. However, the 

performance of non-model-based methods strongly depends on 

the quality of available data. At the same time, non-model-

based methods do not take into account the knowledge of 

structural engineers that design and maintain bridges and the 

influence of degradation of individual elements on the health 

state of the whole bridge.  

Hence, bridge managers are calling for SHM methods that 

are able to: i) assess the health state of the bridge by taking 

account of influences between different elements; ii) take 

account of the expertise of bridge engineers without requiring 

time-consuming processes to develop the SHM method; iii) 

manage different sources of data, such as evidence of the bridge 

behaviour provided by sensors and visual inspection reports; iv) 
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update the assessment of the bridge health state every time new 

evidence of the behaviour becomes available; v) detect and 

diagnose slow degradation mechanisms and sudden changes in 

the bridge condition (damage).  

This project proposes a BBN method for bridge condition 

monitoring and damage diagnostic. A BBN can satisfy these 

requirements, by providing a graphical interface to bridge 

managers, who can interact with the BBN model to assess the 

health state of the bridge and the influence between different 

degrading elements. The BBN method can assess the health 

state of a railway infrastructure, and its elements, at the same 

time. A pre-processing of the infrastructure behaviour is needed 

in order to remove the data noise, which is usually present in 

the measurement of the infrastructure behaviour and assess the 

health state of the bridge reliably. 

A data analysis methodology is thus developed to analyse the 

vibration behaviour of the bridge and monitor the health state 

of bridge. The main novelty of the proposed data analysis 

methodology lies in the use of the Empirical Mode 

Decomposition (EMD), which is adopted to assess Health 

Indicators (HIs) of the bridge, by evaluating the trend of time 

and frequency-domain features of the bridge behaviour. In fact, 

the EMD is generally adopted in the SHM framework to 

identify structural changes by analysing the bridge dynamic 

behaviour directly, i.e., the dynamic behaviour of the bridge is 

used as an input to the EMD process, rather than the extracted 

features [8]. A machine learning method, which is based on a 

Neuro-Fuzzy Classifier (NFC), is also developed to 

automatically assess the health state of bridge elements. The 

HIs of the bridge are used as an input to the NFC.  

A method to merge the expert judgment with the analysis of 

a small amount of bridge behaviour is also proposed. The 

method aims to define the CPTs by means of the expert 

knowledge elicitation process, and then to update the CPTs 

whenever a new measurement of the bridge behaviour is 

available. Indeed, an expert knowledge elicitation process is 

usually adopted to define the CPTs, if no data about the bridge 

behaviour are available [9]. However, such an approach can be 

subjective. On the contrary, when data of the bridge behaviour 

are available, the CPTs can be defined by using learning 

methods. This last approach requires a large amount of data 

usually. However, the proposed method allows defining the 

CPTs by merging expert judgment and bridge behaviour 

analysis. The updating process requires the knowledge of 

Cumulative Distribution Function (CDF) of an optimal HI, 

which is used to monitor the evolution of the bridge health state. 

The CDF is retrieved by analysing a database of bridge 

behaviour, when the bridge behaviour in different health states 

of the bridge is available and known in the database. 

Finally, a robust data mining method for analysing database 

of infrastructure behaviour automatically, accurately and 

rapidly is developed [10]. As a result, the data of infrastructure 

behaviour can be transformed into valuable information for 

decision-makers, by pointing out past changes in the health 

states of the infrastructure. An ensemble-based change-point 

detection method is proposed in order to identify changes in the 

condition of railway infrastructure. This information can be 

used to i) help the construction of the quantitative part of the 

BBN, by providing insights about interdependencies between 

different elements of the asset and (or) changes of 

environmental condition; ii) identify the time when the most 

severe change of the asset health state occurred, and 

consequently diagnose the causes of such changes.  

In what follows, the research aims, and objectives are 

discussed in Section 2, and the developed methods are 

presented in Section 3, followed by conclusions in Section 4.  

2 OBJECTIVES  

The main goal of this research project is to develop SHM 

methods to monitor the health state of a critical infrastructure 

continuously in a reliable manner. The focus is on the 

continuous monitoring, by taking account of the 

interdependencies between different elements of the 

infrastructure and diagnosing damage of the structure. The 

following objectives can be distinguished: 

• Propose a method for bridge condition monitoring and 

damage diagnostics, to assess the health state of a bridge 

and its elements. 

• Analyse the performance of the proposed method, by 

analysing both in-field bridges and FEM under different 

health states. 

• Analyse the data of the bridge behaviour in order to 

remove the noise of the data and achieve a robust 

assessment of the bridge health state. 

• Assess the health state of a bridge automatically, by taking 

account of the past behaviour of the bridge.  

• Consider both the expertise of bridge engineer and the 

analysis of the bridge behaviour.  

• Analyse a database of unknown infrastructure behaviour, 

with the aim of pointing out changes in the health state of 

the infrastructure. 

3 CONDITION MONITORING AND DAMAGE DIAGNOSTIC  

The proposed methods allow analysing the health state of the 

bridge throughout its life time, as shown in Figure 1: i) the 

proposed BBN allows to monitor the health state of the bridge 

continuously, during the life of the bridge (as depicted by the 

red box in Figure 1), by relying on the expertise of the bridge 

engineers who designed the bridge, at the early stage of the 

bridge life; ii) the proposed data analysis methodology allows 

to assess the health state of the bridge elements, when data of 

the bridge behaviour are recorded by using sensors (as depicted 

by the yellow box in Figure 1); iii) similarly, the developed 

machine learning method allows to automatically detect 

damage in the bridge elements, when a vast database of bridge 

behaviour is available (as shown by the orange box in Figure 

1); iv) the novel ensemble-based change-point detection 

method can be adopted in order to analyse the past behaviour 

of the bridge, by pointing out when the health state of the bridge 

changed, and diagnosing the causes of such changes (as 

depicted by the blue box in Figure 1); v) the developed method 

to update the CPTs of the BBN allows to merge the information 

provided by the bridge engineers, with the analysis of the past 

bridge behaviour data. As a consequence, the monitoring and 

diagnostic performance of the BBN are significantly improved, 

when past data of the bridge behaviour are available to define 

the CPTs updating strategy (as depicted by the green box in 

Figure 1).   

 

 



                                                                                                                                                                 D5.2 - Final Report 

21 

 

 
Figure 1. Novel methods developed during the research 

project. 

It is worth noting that the procedure of merging data analysis 

methods with the BBN structure leads to a SHM framework 

that is potentially able to improve its monitoring and damage 

diagnostic performance over time. In fact, the higher the 

amount of bridge behaviour data, the more reliable the BBN-

based analysis, due to the improvement of the data analysis and 

the CPTs update process. However, the data of the bridge 

behaviour need to represent different health states of the bridge 

and require to be validated by bridge engineers, who verify the 

health state of the in-field bridge. In what follows the 

performance of the methods proposed and verified during this 

research project are discussed.  

 The BBN method for bridge condition monitoring and 
damage diagnostic  

The proposed BBN method offers a novel approach for a 

continuous SHM, by tackling the limitations of model-based 

and non-model-based methods. Indeed, a BBN can assess the 

health state of each bridge element and the whole bridge 

simultaneously, without requiring a complex and time-

consuming process of analysis to be used. The BBN can also 

update the health state of the whole bridge, and its elements, 

whenever new evidence of the bridge behaviour becomes 

available. Complex information from different sources, such as 

data from the measurement system that is installed on the 

bridge, visual inspection reports, and expert judgment can be 

used as an input to the BBN. In this way, the knowledge of 

structural engineers that design and maintain bridges is merged 

with the evidence of the bridge behaviour. The BBN approach 

can also manage different sources of uncertainty, i.e. epistemic 

uncertainties that are caused by the incomplete knowledge of 

the phenomenon, and aleatory uncertainties that are caused by 

the randomness. Finally, the BBN offers a diagnostic property 

that allows diagnosing the causes of the observed health state 

of the bridge. 

The BBN has been verified by monitoring the health state of 

three bridges during the project (two FEMs and one in-field 

bridge), by providing good damage diagnostic performance. 

For example, Figure 2 shows an in-field concrete post-

tensioned bridge that has been damaged at the pier location, 

during the monitoring time. The first damage was inflicted after 

19 minutes from the beginning of the monitoring time, whereas 

more severe damage was inflicted after 34 minutes, as depicted 

by dashed vertical lines in Figure 4. The bridge is monitored by 

the two sensors represented as circular dots in Figure 2.  

The health state of the bridge is monitored by developing a 

BBN. The structure of the proposed BBN approach is 

developed by identifying major (such as the deck and spans of 

the bridge) and minor (such as beams and minor bridge 

elements) elements of the bridge. For each element of interest,  

 
Figure 2. Post-tensioned concrete bridge. 

 

a node is defined in the BBN framework. Different nodes are 

connected by considering the same order as during the 

construction of the real bridge, i.e., from minor to major 

elements, as shown in Figure 3, where the E_i nodes represent 

minor bridge elements. The BBN of Figure 3 allows  

monitoring of the health state of the bridge continuously, i.e., 

every time new evidence of the bridge behaviour is available, 

it is analysed by the proposed data analysis method, and then 

used as an input to the BBN. Therefore, the health state of the 

bridge is assessed by taking the health state of each of its 

elements into account. 

 

 

Figure 3. BBN of the post-tensioned concrete bridge. 

The interdependencies between different nodes are evaluated 

by defining the CPTs. A Fuzzy Analytic Hierarchy Process 

(FAHP) of bridge expert judgements is developed in order to 

define the CPTs. Figure 4 shows the evolution of the health 

state of the whole bridge over time, which is assessed by the 

BBN of Figure 3. The BBN is able to point out changes of the 

bridge health state. At the same time, the BBN allows 

diagnosing the causes of such changes, by allowing an 

interactive visualization of the health state of the bridge and its 

elements to bridge managers, who can interact with the BBN 

structure to actively analyse the BBN results. Consequently, if 

the methodology was to be implemented on a touch screen 

system, a bridge manager can select the node of the bridge 

element of interest and monitor the evolution of the health state 

of that bridge element over time. For example, Figure 5 shows 

the evolution of the health state of the whole bridge, and its 

parent nodes, i.e., the bridge major elements that influence the 

health state of the whole bridge.  
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Figure 4. Evolution over time of the health state of the whole 

bridge. 

A bridge manager can easily point out that the damaged major 

element of the bridge is the main span, as shown in Figure 5 by 

the increasing probability of the degraded health states. 

Similarly, the damaged elements of the bridge can be identified 

by the BBN. 

 
Figure 5.  Evolution over time of the health state of the whole 

and its parent nodes, i.e., left, right and main span. 

 The data methodology for bridge damage detection  

Every time when a new set of raw bridge acceleration is 

provided by the sensors, the proposed data analysis 

methodology allows to assess the bridge health state by 

following five steps: 1) the raw acceleration is pre-processed 

with the aim of removing outliers in the data; 2) the free 

vibration behaviour of the bridge is identified and 3) a feature 

extraction process is developed, to reduce the dimensionality of 

the free-vibration bridge behaviour. Indeed, the sensors provide 

thousands of values of the bridge acceleration at each second in 

time, whereas features can extract relevant information 

regarding the bridge health state, by merging the thousands of 

sensor values into a lumped assessment. Statistical features, 

frequency-domain features, and vibration parameters are 

assessed at each τ time step in order to extract information from 

the free-vibration behaviour of the bridge; 4) the feature trend 

over the time is computed every time interval τ*, by assessing 

the residuals of the Empirical Mode Decomposition (EMD) of 

each extracted feature; 5) a set of 4 bridge Health Indicators 

(HIs), which provides information with respect to the health 

state of the monitored bridge, is obtained by calculating 

statistical parameters (such as standard deviation and 

skewness) of the feature trend. 

For example, the post-tensioned bridge of Figure 2 has been 

analysed by means of the developed data analysis method. 

Figure 6 shows the evolution of the optimal HIs of the bridge, 

which has been identified by optimizing the trend and 

monotonicity of the HIs. The different magnitudes of the bridge 

damage are represented by different classes, as shown in Figure 

6. The HI-3 of both sensors allows the identification of the 

different health states of the bridge, i.e., the HI-3 increases 

when the damage magnitude increases. The proposed data 

analysis methodology is also verified in an in-field steel truss 

bridge, which was subject to a progressive damage test. The 

method is able to point out different health states of the bridge 

infrastructure in a reliable and fast manner. 

 

 
Figure 6. HIs evolution during the bridge monitoring time. 

 The machine learning method for bridge damage 
detection and diagnostic  

An automatic assessment of bridge health state is reached by 

developing a machine learning method, which relies on a NFC. 

The NFC is trained in a supervised manner by using a dataset 

of bridge behaviour in different health states. The optimal 

subset of HIs, which has been identified by using a Modified 

Binary Differential Evolution (MBDE) algorithm, is used as an 

input to the NFC, in order to assess the health state of the 

bridge. The NFC is selected from amongst the machine 

learning classifiers because it combines fuzzy classification 

techniques with the learning capabilities of the Neural 

Networks. Therefore, the network structure is developed by 

means of if-then fuzzy rules, which are initially defined by 

using a K-means clustering algorithm. Conversely to ANNs, 

which require the optimization of the number of hidden layers 

and hidden nodes, the NFC requires only the optimization of 

the number of clusters of the K-means algorithm, and the 

performance of the NFC is slightly influenced by the number 

of the cluster.   

The developed machine learning methods are verified by 

monitoring the performance of the post-tensioned concrete 

bridge of Figure 2. The available bridge behaviour data are 

divided into training, testing, and validation set. In this way, the 

performance of the NFC is validated by analysing a set of 

unknown bridge behaviour, i.e., the health state of the bridge 

data behaviour belonging to the validation test is not known. 

Therefore, the NFC is required to assess the health state of the 
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bridge in a reliable manner. The accuracy of the NFC, i.e., the 

percentage of correct classification of the bridge health state, is 

79% on average. Such accuracy is a good result in monitoring 

the health state of an in-field bridge, due to the unknown source 

of uncertainty and changing environmental conditions. Indeed, 

similar machine learning methods, which have been previously 

proposed in literature by relying on ANNs and verified on 

FEMs by adding white Gaussian noise to the simulated bridge 

behaviour, have shown an average accuracy of 65% [11], 

whereas clustering techniques, which were verified on in-field 

bridges, have shown an average accuracy of 68%, with a 

maximum accuracy of 75% [8].  

 The ensemble-based change-point detection for mining 
large database of infrastructure behaviour  

Usually, an SHM system generates a large quantity of data, and 

consequently, processing and interpreting this data can be 

difficult and time-consuming. Here, an ensemble-based data 

mining method is proposed to detect the past unexpected 

behaviour of civil infrastructure. An ensemble-based change-

point detection analysis is developed, with the aim of 

identifying the time when the infrastructure behaviour starts to 

change rapidly and point out the duration of the health state 

change. The ensemble-based method is needed due to three 

main limitations of individual change-points detection 

methods: i) individual change-point methods, such as 

Cumulative Sum (CUSUM)-based or probability distribution-

based [12] methods, can identify only abrupt changes in the 

data, without pointing out the most severe changes; ii) the 

longer the duration of the monitored behaviour of the system, 

the higher the number of the abrupt changes, that are identified 

by an individual change-point method, and thus, the most 

critical change of the infrastructure health state can be lost 

among all the change-points; and iii) the duration of the most 

critical change of the infrastructure health state is not identified 

by individual methods. On the other hand, the proposed 

ensemble-basis of change-point method allows identifying the 

most critical change in the data, by assessing its start and end 

time. As a consequence, decision-makers can initially focus 

only on the information regarding the most critical behaviour 

of the infrastructure. 

The proposed method has been verified on a database of 

behaviour of an in-field railway tunnel, which is subject to 

maintenance activities. The proposed method is able to identify 

the critical parts of the infrastructure, and then point out the 

most critical change of the element behaviour. For example, 

Figure 7 compares the performance of the proposed ensemble-

based change-point detection with the performance of four 

individual methods. The raw infrastructure behaviour shows a 

rapid change of the infrastructure health state. However, each 

individual method is unable to point out the start and the end of 

the critical infrastructure behaviour, as shown by vertical lines 

in Figure 7, which represent the detected change-point. 

Particularly, the individual methods can identify only the 

starting point of the change. Conversely, the proposed 

ensemble-based change-point method identifies a change-point 

interval that starts at time 50 h and ends at time 169 h. In this 

way, the initial point where the health state of the infrastructure 

starts to change, and the end point of the health state change are 

identified. Finally, the results of the proposed method can be 

used to identify the possible causes of the critical change. 

 

Figure 7. Change-point detection by using the proposed 

ensemble-based method and each individual change-point 

method 

 The CPTs updating method for a BBN-based bridge 
condition monitoring and damage diagnostic approach  

A method to update the CPTs is developed by merging the 

expert knowledge elicitation process with the analysis of the 

bridge behaviour. The method requires the availability of 

bridge behaviour data during different known health states of 

the bridge elements in order to assess the dependencies between 

different bridge elements, by means of CDFs. The proposed 

method allows updating of the CPTs by taking account of the 

current health state of the bridge elements, whenever a new 

measurement of the bridge behaviour is available during the on-

line monitoring of the bridge.  

The diagnostic performance of the BBN is significantly 

improved by the CPTs updating method. For instance, Figure 8 

shows the evolution of the health state of the damaged elements 

of the post-tensioned bridge of Figure 2, when the proposed 

strategy for updating the CPTs is used (Figure 8 top), and when 

the CPTs are defined by using the expert knowledge elicitation 

process (Figure 8 bottom). Both strategies allow to point out 

the different health states of the bridge elements, by increasing 

the probability of the degraded states when damages are 

inflicted to the bridge. However, when the CPTs are updated 

by adopting the proposed strategy, the probability of the 

degraded states increases more than the probabilities using the 

expert-based CPTs. Furthermore, the probability of the states 

of degradation increases over time in Figure 8 top, i.e., when 

the proposed strategy is adopted. This means that the health 

state of the bridge elements decreases over time. In fact, the 

health state of the bridge decreases over time, due to the 

different damages that are inflicted to the bridge pier. 

Therefore, the BBN that relies on the proposed strategy to 

update the CPTs can diagnose the damage states of the bridge 

more clearly. 
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Figure 8. Comparison of the performance of the proposed 

updating strategy and the expert knowledge elicitation 

process. 

4 CONCLUSIONS  

The health state of bridges is usually assessed by time-

consuming, expensive and subjective visual inspections at 

fixed time intervals, ranging from one to six years. 

Consequently, the degradation of the bridge health state can 

increase without being detected, and reduce the safety, 

reliability, and availability of both the bridge and the 

corresponding transportation network. SHM methods allow 

monitoring the health state of a bridge continuously, by 

analysing the bridge behaviour data. In this research project, 

the following set of methods for bridge condition monitoring 

and damage diagnostic has been proposed: 

• A BBN method to assess the health state of a bridge by 

taking account of interdependencies between different 

elements of the bridge. The BBN method has been 

verified by monitoring and diagnosing the health state of 

two FEMs of two bridges and an in-field bridge. 

• A data analysis methodology has been developed with the 

aim of pre-processing the data of the bridge behaviour. In 

this way, the noise of the data is removed, and HIs of the 

bridge have been provided to allow a robust assessment 

of the bridge health state.  

• A machine learning method has been proposed by relying 

on an NFC. The method has been trained on past 

behaviour of the bridge and allowed to assess the health 

state of the bridge in an automatic manner.  

• A method to merge expert judgment with an analysis of 

the bridge behaviour has been developed. Particularly, the 

two approaches have been merged in order to define and 

update the CPTs of a BBN.  

• An ensemble-based change-point detection has been 

proposed to analyse a database of past unknown 

behaviour of the infrastructure. The method has allowed 

to point out the most critical change of the infrastructure 

health state. 

The methods have been verified on FEMs of bridges and by 

assessing the health state of three in-field infrastructures, and 

they have demonstrated to be able to assess the health state of 

in-field infrastructure robustly and reliably, by taking account 

of interdependencies between different elements of the 

structure. The accuracy of SHM methods could be further 

improved by focusing future efforts on machine learning and 

data analysis methods. 
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ABSTRACT: Bridges deteriorate over time due to the influence of environmental and operational effects, and the measurement 

of this deterioration has been the subject of much research. Bridge damage identification methodologies have advanced 

considerably due to the incorporation of statistical pattern recognition and machine learning algorithms; however, the successful 

application of such methods has been stifled. One may argue that the continued use of model-based damage sensitive features as 

inputs to damage identification methodologies hindered its progression, given their sensitivity to environmental and operational 

effects, in addition to the difficulty of accurately determining higher, more damage sensitive, vibration modes without bridge 

closures and heavy loading procedures. An alternative option is to utilize vibration-based damage sensitive features which do not 

require external input loading or bridge closures and can be continuously recorded. The work developed in this project investigates 

the damage identification performance of a number of vibration-based damage sensitive features on two separate progressively 

damaged bridges subjected to ambient and operational loading, respectively.  

KEY WORDS: Vibration; Hilbert transform; Empirical Model Decomposition (EMD); Damage.           

1 INTRODUCTION 

Civil engineering infrastructures are subjected to degradation 

due to the passage of time and as well as a great number of 

various external adverse actions. As of 2016, in the United 

States alone, 39% of the bridges in the National Bridge 

Inventory were built over more than 50 years ago and 9.1% of 

the total number of bridges were deemed structurally deficient. 

As a result, on average of 188 million trips were made daily 

across these structurally deficient bridges, and the most recent 

estimate projects the backlog of rehabilitation projects for these 

infrastructures at $123 billion [1]. Europe’s highway bridge 

count is circa one million, and of Europe’s half a million rail 

bridges, 35% are over 100 years old.  

A review of the state-of-the-art on modal and non-modal 

based, output only techniques is first carried out [2,3]. The main 

results show that environmental and operational variations have 

considerable influence on a bridge’s dynamic behavior, which 

may be mistaken for damage when using modal parameters 

such as natural frequencies. Data normalization techniques help 

determine a bridge’s baseline response under a range of normal 

environmental and operational conditions. The process of data 

normalization can be challenging in itself due to the non-linear, 

multivariate nature of a bridge’s behavior and due to the 

quantity of data required.  On the other hand, response 

modeling aims at separating the variations imposed by 

“normal” environmental/operational actions from those caused 

by damage. It relies on training statistical learning algorithms 

so that they can accurately estimate the “normal” structural 

response. The most reported statistical modeling algorithms 

found in SHM literature consist of multilayer perceptron neural 

networks, support vector regressions, linear regressions, 

Principal Component Analysis (PCA), and cluster analysis. 

Non-modal-based output only techniques offer robustness in 

varying conditions, ease of application, and a high level of 

damage sensitivity. For this reason, it is considered 

advantageous to investigate within TRUSS new damage 

features and vibration-based non-modal performance 

indicators. 

2 VIBRATION PARAMETERS 

The present section introduces a number of output-only 

vibration parameters that can be extracted from discrete time-

histories of acceleration obtained under ambient or vehicle- 

induced excitation conditions. For damage identification 

purposes, the vibration parameters must provide a measure of 

signal energy, vibration frequency or signal decay. Ideal 

vibration parameters should be representative of the discretized 

acceleration response from which it is obtained, sensitive to any 

structural changes that may occur and also being insensitive to 

the effects of environmental and operating conditions. The 

following list of vibration parameters is chosen for their ability 

to measure either signal energy, frequency, decay, or a 

combination thereof. Some parameters are novel, being first 

presented herein, while others are taken from other fields of 

engineering such as seismology and brought into a SHM 

context for the first time. The applicability of each vibration 

parameter to the specific type of vibration signal will depend 

on whether the parameter is suitable for extraction from short 

or long duration signals or from stationary or non-stationary 

signals. Although none of the parameters can be considered 

“ideal” in terms of damage identification as they do attain some 

degree of sensitivity to environmental and operation 

conditions, the addition of post-processing techniques, outlined 

in the following section, restrict their influence. 

 Cumulative absolute velocity (CAV) 

CAV is an energy-based vibration parameter originally 

proposed by the American Electric Power Research Institute 

(1988) to assess the structural damage potential of earthquakes. 

Chapter 4: Assessment of bridge condition and safety based on measured vibration 

level 
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The concept of its original use is based on the theory that 

earthquakes with long duration vibration cycles result in greater 

structural damage. In the present study, it is used to ascertain 

whether or not a bridge is required to exert greater energy in 

resisting a repeating loading.     

𝐶𝐴𝑉 = ∫ |𝑥̈(𝑡)|𝑑𝑡
𝑡

0

  (1) 

 Arias intensity (IA) 

IA, proposed by Arias [4], is another energy based vibration 

parameter, commonly used as an empirical indicator of an 

earthquake's structural damage potential and also to predict the 

likelihood of landslides.  

𝐼𝐴 =⁡
𝜋

2𝑔
.∫ 𝑥̈(𝑡)2
∞

0

⁡𝑑𝑡 (2) 

 Destructiveness potential factor (PD) 

PD is a variation of Arias Intensity that incorporates a 

frequency-based denominator, as proposed by Araya and 

Saragoni [5]. It accounts for frequency characteristics in 

addition to vibration energy by including the variable 𝜈0, which 

is the number of zero crossings per unit of time.   

𝑃𝐷 =⁡⁡

𝜋
2𝑔
. ∫ 𝑥̈(𝑡)2

∞

0
⁡𝑑𝑡

𝜈0
2

 (3) 

 Mean frequency (FM) 

FM is an adaptation of a parameter originally developed by 

Rathje et al [6] called Mean Period (TM), which was developed 

to assess Earthquake ground motions. It uses Fourier amplitude 

values {FAi} within an associated frequency range to yield a 

weighted average period between 0.25 Hz and 20 Hz. As this 

parameter requires accurate Fourier amplitude values of each 

frequency, it is not suitable for use on non-stationary signals 

where the frequency content changes with time; therefore it is 

only applied herein to the data obtained from the ambient 

induced excitation case study data.  

⁡⁡𝐹𝑀 =⁡⁡⁡
∑ 𝐹𝐴𝑖

2. (𝑓𝑖)⁡⁡⁡
𝑛
𝑖=𝑚

∑ 𝐹𝐴𝑖
2⁡⁡⁡𝑛

𝑖=𝑚

⁡⁡⁡⁡for⁡𝑚 ≤ 𝑓𝑖 ⁡≤ 𝑛⁡(in⁡Hz)⁡ (4) 

 Cumulative absolute displacement (CAD) 

This parameter is used to assess the variation in displacement 

at each sensor over time for a repeated loading, i.e., a repeated 

vehicle crossing. As a vehicle crossing results in a short 

duration vibration signal, an accurate approximation of 

transient displacement can be obtained from the acceleration 

signal using integration and band-pass filtering to avoid drift. It 

is, however, necessary to ensure that the bridge is close to static 

behavior at t = 0 s in the neutral axis position to avoid ambient 

environment induced variations.  

𝐶𝐴𝐷 = ∫ |𝑥(𝑡)|𝑑𝑡
𝑡

0

 (5) 

 Distributed vibration intensity (DVI) 

DVI, first detailed herein, utilizes vibration intensity, which in 

simple harmonic motion context can be defined as (I = a2/f), 

where a is acceleration amplitude and f is frequency. The SI 

units of vibration intensity are mm2/s3, but its logarithmic power 

form of decibels (dB) is more commonly used. For the 

distributed variant employed in the present study, a Fourier 

transformation is applied to the acceleration response and the 

summation of the vibration intensity values is taken within a 

frequency range, denoted by (fi) within the limits m-n in 

Equation (6). The frequency range should encompass the first 

few modes of vibration of the structure in question. In this way, 

DVI may capture the damage sensitivity associated with energy 

and modal changes, while unwanted variation due to adjusting 

ambient conditions and frequency domain noise can be 

diminished over sufficient duration length, in addition to the 

application of Mahalanobis Squared Distance (MSD), as those 

variations are assumed to be Gaussian in nature.  

𝐷𝑉𝐼 = ∑ 10𝑙𝑜𝑔10 (
𝑥̈𝑖
2.(𝑓𝑖)

𝑓𝑖
𝐼𝑆⁄ )

⁡⁡

𝑛
𝑖=𝑚   

for⁡𝑚 ≤ 𝑓𝑖 ≤ 𝑛⁡(in⁡Hz), 𝐼𝑆 =⁡10⁡𝑚𝑚
2 𝑠3⁄  

    

(6)  

 Mean cumulative vibration Intensity (MCVI) 

MCVI, first presented herein, is the second of three parameters 

based on the concept of vibration intensity (energy /frequency). 

In MCVI, the energy portion, i.e., the numerator, is the square 

of the aforementioned vibration parameter CAV, while the 

denominator is a weighted mean value of Fourier frequency 

within a specified frequency range. As per Equation (7), the 

weighting is applied to the discrete frequencies (𝑓𝑖)⁡via their 

corresponding Fourier Amplitude values (𝐹𝐴). As highlighted 

for DVI, it is important that the frequency range selected 

encompasses the first few modes of vibration of the structure; 

in the present study, the frequency range is taken as (m - n = 1 

Hz - 20 Hz). 

𝑀𝐶𝑉𝐼⁡ = ⁡⁡
∫ 𝑥̈
𝑡

0
(𝑡)2⁡𝑑𝑡

(∑ 𝐹𝐴𝑖
2.𝑛

𝑖=𝑚⁡ (𝑓𝑖)⁡⁡⁡ ⁡⁡⁡∑ ⁡𝐹𝐴𝑖
2𝑛

𝑖=𝑚⁄ )
⁡⁡⁡ 

𝑓𝑜𝑟⁡𝑚 ≤ 𝑓𝑖 ≤ 𝑛⁡(in⁡Hz)⁡⁡⁡ ⁡⁡⁡ 

   

 (7)  

 Vibration envelope area (VEA) 

VEA is another novel vibration parameter proposed that can be 

considered as a pseudo energy-based parameter. It is obtained 

by calculating the area enclosed by two spline interpolated lines 

that link the positive and negative peaks, respectively. VEA is 

best used after a low-pass has been applied to the vibration 

signal to remove potential high-frequency peaks that may 

obscure the resulting area calculation. Figure 1 presents an 

example of how VEA is obtained, with the vibration envelope 

shaded.     

 
Figure 1. Example of vibration envelope area obtained from a 

vehicle induced vibration response. 
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 Vibration energy decay parameters 

Equation (8) provides the exponential decay function, where its 

components ⁡𝑦0 and ⁡𝑎 represent the Exponential Decay 

Intercept (EDI) and Exponential Decay Constant (EDC), 

respectively. These two parameters (EDI and EDC) can be 

utilized for the purposes of damage identification.  

                       𝑦(𝑡) = 𝑦0𝑒
𝑎𝑡                                        (8) 

However, applying this function to the raw signal will not 

result in the required decay profile as negative values will 

hinder its application. Firstly, the vibration signal must be 

transformed into a suitable form for the exponential decay 

function. This is completed in two ways in the present study. 

The first method aims to find the exponential decay of vibration 

energy. This is achieved by squaring the acceleration response 

before applying the exponential decay function to obtain the 

parameters EDI and EDC. Note that the exponential decay is 

only taken from the point at which the vehicle has exited the 

bridge. The second method that incorporates the exponential 

decay function is explained in the following section.  

 Hilbert envelope decay parameters 

Equation (9) depicts the Hilbert Transform of the original 

vibration signal 𝑥(𝑡) where the integral is evaluated as a 

Cauchy principal value. Combining 𝑥(𝑡) and j. 𝐻{𝑥(𝑡)}, 
produces the analytical signal 𝑧(𝑡), where⁡𝑗 indicates the 

complex form of the Hilbert Transform. The Hilbert envelope 

𝑒(𝑡) is obtained from the absolute analytical signal using spline 

interpolation (Equation (11)). Finally, the exponential decay 

function (Equation (8)) is fitted to the Hilbert envelope to 

provide the required vibration parameters EDI and EDC. 

𝐻{𝑥(𝑡)} =
1

𝜋
∫

x(τ)

t − τ
dτ

∝

−∝

 (9) 

𝑧(𝑡) = ⁡𝑥(𝑡) + ⁡𝑗. 𝐻{𝑥(𝑡)} (10) 

𝑒(𝑡) = |𝑧(𝑡)| (11) 

The Hilbert Transform can identify the additional frequency 

bursts as it acts as a filter. This is advantageous in the case of 

structural vibration responses, as modes of vibration can be 

emphasized by using a Hilbert filter. Leaving only the 

sinusoidal frequency content, and as the Hilbert envelope is 

applied only to the part of the vibration response that occurs 

after the vehicle has exited the bridge, the sinusoidal 

frequencies present in the signal should be the structural modes 

of vibration. It is also recommended to apply band-pass 

filtering to the vibration signal prior to applying the Hilbert 

Transform to remove high-frequency noise and low-frequency 

drift. Figure 2 provides a graphical example of the exponential 

decay function plotted over the Hilbert envelope. Note that the 

Hilbert Transform envelope begins spikey, then gradually 

settles to flow smoothly along the free vibration peaks. This is 

indicative of the presence of multiple frequencies (modes of 

vibration) at the start of the signal, which decay quickly, 

leaving only the first mode of vibration, whose peaks decay 

identically in both the real and complex parts of the analytical 

signal. The Hilbert envelope, depicted in Figure 2 contains the 

peaks of the individual structural modes of vibration. As they 

decay through time, the resulting exponential decay constant 

(EDC) is representative of modal damping across all excited 

modes simultaneously. 

 

 

Figure 2. Hilbert Transform envelope of the original signal 

and its analytical form. 

2.11 Application suitability of vibration parameters 

The variables of each bridge monitoring campaign, such as 

monitoring duration, excitation method, number and type of 

sensors can differ widely from project to project. This may be 

due to the influence of external conditions associated with each 

bridge, such as the traffic volume and type, socioeconomic 

factors and the financial budget available. The result is that the 

vibration data obtained may attain different properties that may 

render some damage sensitive features, such as those presented 

here, unsuitable for the application. Furthermore, Fourier-

based damage sensitive features, such as modal parameters, are 

unsuitable for application to short duration non-stationary 

vibration responses that would be typical of vehicle induced 

excitation bridge testing. For this reason, Table 1 is provided to 

give a breakdown of the applicability of each of the selected 

vibration parameters to specific vibration properties that may 

influence their damage identification performance.  

3 METHODOLOGY 

The present section provides a theoretical overview of the 

algorithms utilized within the present study.  

 Outlier detection for ambient excitation condition  

For the ambient condition test, the vibration parameters are 

assessed using Mahalanobis Squared-Distance (MSD), which 

is a common multivariate outlier detection algorithm that uses 

mean and covariance data to train and assess dataset continuity. 

MSD is determined as shown in Equation (12), where {X}ζ is 

the potential outlier, {𝑋̅} is the mean of the training data and 

[Σ] is the covariance matrix of the training data. 

𝐷𝜁 = ({𝑋̅}𝜁 − {𝑋})
𝑇
[Σ]−1({𝑋}𝜁 − {𝑋̅})   (12) 

In addition to the MSD, the Minimum Covariance 

Determinate (MCD) estimator is also employed to enhance 

robustness and reduce uncertainty regarding sources of ambient 

excitation by identifying and removing outliers from the 

training data prior to MSD. Although environmental conditions 

may remain relatively constant throughout the bridge test, the 

assumption of Gaussian distributed sources of ambient loading 

cannot be applied in some cases (one traffic lane under the 

bridge in operation throughout the test or feasible construction 
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work nearby). This leaves a case where the undamaged 

vibration data used to train the MSD may contain outliers itself 

due to passing traffic or construction vehicle activity, which if 

left included in the training data may negatively impact the 

subsequent test/damaged data results, particularly if the 

training data outliers are significantly dissimilar to the 

remaining data set. The MCD employed in the present study is 

the FAST MCD algorithm [7].

Table 1. Vibration parameter application classification. 

 Vib. Para. 
CAV IA PD FM DVI MCVI CAD VEA EDI EDC 

Property  

Fourier-Based            Parameter           

Non-Stationary Signal Applicability            

Long Duration Signal Applicability           

Suitability to Ambient Induced Excitation           

Suitability to Vehicle Induced Excitation           

 Damage localization methodology   

In addition to the use of MSD for damage detection purposes 

under ambient excitation conditions, the present study also 

assesses the change in vibration parameters in a spatial context. 

This is achieved by assessing changes in the distribution of the 

vibration parameters from each sensor location through time. 

Vibration parameters are obtained in discretized windowed 

datasets of 30 min duration with 10 min overlap, to which a 

suitable distribution is fitted. For energy-based parameters, 

such as CAV, their value can never be less than zero and have 

no theoretical maximum, as such, their distribution fit can be 

taken as Log-Normal. For parameters that include a frequency-

based component, their values can be considered to be centered 

about a specific mean value, as such, their distribution fit can 

be taken as Gaussian/Normal.   

To measure the degree of variation through time of the 

windowed distributions, symbolic data objects are used. 

Symbolic data objects are representative values of a larger data 

set that can be used in an SHM context, as demonstrated in [8]. 

In the present study, the overlapping Normal and Log-Normal 

distributions of the vibration parameters are reduced to their 

symbolic data objects of Median and Interquartile Range for 

Normal distributions and Interquartile Values (0.25 and 0.75) 

for Log-Normal distributions. Using these symbolic objects as 

a two-dimensional damage feature vector, changes to the 

overlapping windowed distributions through time can be 

calculated using pairwise Euclidean distance.  

4 TEST DATA 

The present section gives explicate information regarding the 

data collection methodology, structural testing regimes, and 

collected output data.  

 S101 bridge – ambient excitation  

The S101 Bridge was a pre-stressed 3-span flyover near 

Vienna, Austria that had a main span of 32 m and two 12 m 

side spans. The deck cross-section was 7.2 m wide double-

webbed t-beam, whose webs had a width of 0.6 m. The height 

of the beam varied from 0.9 m in the mid-span to 1.7 m over 

the piers. In 2008, it was decided to replace the S101 Bridge 

due to insufficient carrying capacity and deteriorating structural 

condition being identified from visual inspection data. A 

progressive damage test was conducted on the S101 bridge 

across 3 days in 2008 through the completion of a number of 

sequential damage actions, which are presented in Table 2. 

During the test the bridge was closed to traffic, meaning that 

excitation was mainly ambient, although one traffic lane 

beneath the bridge was kept in use throughout the test which 

resulted in vibrations being transmitted through the 

foundations. Additionally, construction work was also in 

progress nearby that used heavy machinery and affected the 

vibratory response of the bridge at times, particularly during the 

cutting of the first pre-stressed tendon when it was noted that a 

vibrating impact roller was in operation close by. These 

additional sources of excitation add a level of uncertainty to the 

vibration data as no specific information on traffic volume was 

recorded. As for environment sources of excitation, very little 

temperature variation was observed throughout the test 

duration as sub-zero temperatures were kept within a 3 to 4- 

degree range due to persistent heavy cloud cover [9]. After the 

pier settlement phase was halted, the pier was hydraulically 

lifted back to its original position and compensation plates were 

inserted. Vibration data were recorded by 13 tri-axial 

accelerometers, with a sample rate of 500 Hz, spaced out along 

on the West side of the bridge deck. Vibration recordings from 

the sensors did not cease throughout the progressive damage 

test. 

 Steel truss bridge - vehicle-induced excitation 

The second set of test data utilized within the present study is 

obtained from a progressive damage test conducted on a 

Japanese bridge that was subjected to a moving vehicle 

excitation [10]. The bridge in question was a simply-supported 

steel truss bridge that spanned 59.2 m with a width of 3.6 m and 

a max height of 8 m. It was scheduled to be replaced in 2012, 

before which a progressive damage test was carried out while 

the bridge was closed to the public. Damage induced to the 

bridge structure consisted of the severing and partial severing 

of vertical members of the main truss structure. In all, three 

damage scenarios were competed with a recovery action also 

carried out in between. The progression of the damage states is 

detailed in Table 3. The dynamic behavioral response was 

recorded from 8 uniaxial accelerometers with sample rates of 

200 Hz. For each damage scenario, a 21 kN double-axle vehicle 

was driven across the bridge three times at approximately 40 

km/h to induce excitation. Note that no vehicle dynamics were 

obtained; however, the dynamic response of the bridge has 

been assessed in detail by Kim et al [10], who identified the 

first five modes of vibration for each damage scenario, which 

are utilized at the end of the present study as a comparison of 

damage identification performance for the vibration parameters 

assessed herein. 
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Table 2.  Damage actions conducted on the S101 bridge.  

Table 3.  Damage actions conducted on the steel bridge. 

Damage State Description of Damage Actions 

INT Undamaged 

DMG1 Half cut in vertical member at mid-span 

DMG2 Full cut in vertical member at mid-span 

RCV Mid-span member reconnected 

DMG3 Full cut in vertical member at 5/8th span 

5 RESULTS AND CONCLUSIONS 

 Detection of S101 bridge under ambient excitation  

CAV and IA have detected the cutting of the pier with ease and 

showed signs of step changes at each pier lowering stage, 

however as the pier is repositioned, only IA seems to mirror that 

behavior by veering back towards and below the damage 

threshold line, whereas CAV stays entirely above the damage 

threshold. Both parameters have depicted a slight upturn as the 

third pre-stressed tendon is severed, however, the change in 

trend is slight, save for a few data points that briefly shot over 

the threshold. The latter appears to be an anomaly caused by 

external sources of vibration, rather than a sudden and 

temporary change in structural behavior. As PD is calculated 

using IA as a numerator before dividing it by the number of zero 

crossing per unit of time, it is to be expected that they should 

share a similar pattern. However, it seems that PD provides 

greater detail of each stage of the damage test. The trend of PD 

during the pier settlement stages has been upward, save for the 

second lowing step which is depicted by a steep step change 

downwards. As the pier is repositioned to its original position, 

PD has failed to signify an improvement in structural condition, 

however, after the second pre-stressed tendon is cut there has 

been a trend downwards below the damage threshold line. 

Overall, MCVI has produced similar results to PD but in a more 

compact manner, which is positive as it indicates a low standard 

deviation. Figure 3 depicts the damage detection results of DVI, 

which provides a compact scatter of data points through time. 

Not much variation is seen between each pier lowing stage, 

however, the moment at which the pier is returned to its original 

position has been clearly captured, although the data points do 

not fully return under the threshold line, as expected. 

Thereafter, the DVI values remain quite stationary, even 

throughout the night, until soon after the third tendon is 

severed, at which point an increase in damage is exhibited.  

 
Figure 3. Mahalanobis squared-distance using DVI. 

To advance the assessment with the parameters DVI and MCVI 

further, cross power spectral densities have been employed. As 

both DVI and MCVI utilize Fourier based parameters in their 

derivation, this can be replaced by a cross power spectrum 

instead. The rationale to this is that the cross power spectrum 

provides a Fourier Transform of the cross-correlation function 

of the power shared at each frequency between two signals. 

Therefore, with the use of a reference sensor, a more 

comparative representation of change can be obtained. When 

damage is introduced at a specific location, then the cross-

correlation of frequency power will change for that location 

compared to the reference sensor and should be detectable with 

Mahalanobis Squared-Distance. In the case of DVI obtained 

from cross power spectral densities (Figure 4), a significant 

improvement has been achieved, whereby after the pier is 

repositioned the data points return below the damage threshold 

entirely, which is what is expected given that the bridge is pre-

stressed.  

 

 
Figure 4. Mahalanobis Squared-Distance damage detection 

using DVI obtained from the cross-power spectrum. 

 

Thereafter there is a slight upward trend, but not substantial 

enough to cross the threshold to a large extent until after the 

State Start Time End Time Description of Damage Actions 

1 10.12.2008 05:16 pm 11.12.2008 07:13 am Undamaged 

2 11.12.2008 07:13 am 11.12.2008 10:21 am North-Western (NW) column cut through 

3 11.12.2008 10:21 am 11.12.2008 11:49 am First pier lowering step of 1 cm (1 cm total) 

4 11.12.2008 11:49 am 11.12.2008 01:39 pm Second pier lowering step of 1 cm (2 cm total) 

5 11.12.2008 01:39 pm 11.12.2008 02:45 pm Third pier lowering step of 0.7 cm (2.7 cm) 

6 11.12.2008 02:45 pm 12.12.2008 01:12 pm Compensating plates inserted and pier returned to original position 

7 12.12.2008 01:12 pm 12.12.2008 03:03 pm First pre-stressed tendon cut over NW pier 

8 12.12.2008 03:03 pm 13.12.2008 05:44 am Second pre-stressed tendon cut over NW pier 

9 13.12.2008 05:44 am 13.12.2008 10:08 am Third pre-stressed tendon cut over NW pier 

10 13.12.2008 10:08 am 13.12.2008 11:14 am Forth pre-stressed tendon cut over NW pier 
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third pre-stressed tendon is severed, although this occurs in a 

gentler manner than its original form in Figure 3. In summary, 

the parameter DVI obtained from the power-spectrum from the 

cross-correlation using an accelerometer as reference sensor 

has been the one performing better using ambient induced 

vibration. 

 Localization of S101 bridge under ambient excitation 

The method described in Section 3.2 is applied for damage 

localization. From all vibration parameters examined, the best 

results correspond again to the DVI. In fact, Figure 5 presents 

the damage localization results of DVI, which provides a very 

clear location of damage at the North pier. The damage hotspot 

begins, like all others, at the moment of pier cutting, after which 

it increases in intensity after the third pier lowering step, before 

returning to an undamaged stage after pier repositioning.  

Significantly, the second damage hotspot occurs before the 

third pre-stressed tendon is cut and increases in intensity as the 

third and fourth tendon are severed, indicating that it is most 

likely caused as a result of damage.  

 

 
Figure 5. Evolution of DVI through time at each sensor.  

 Damage identification methodology for steel truss 
bridge vehicle - induced excitation 

In this case, empirical vibration parameters labelled CAV, CAD, 

EDI, EDC and Instantaneous Vibration Intensity (IVI) have been 

assessed [11], and successfully identified the required damage 

events, with CAD providing the greatest resolution [12]. To 

evaluate the damage identification capability, the percentage 

variation observed at the damage location for condition states 

DMG2, RCV and DMG3 are given in Table 3 and can be 

compared against modal frequency changes in Table 4, as 

obtained by Kim et al [10]. From the comparison, all of the 

vibration parameters assessed appear to have outperformed the 

modal frequency changes, with IVI’s percentage differences 

producing the best overall. The study has demonstrated that IVI 

is suitable for quantifying the instantaneous outputs of the HHT 

and that it is an effective damage parameter for short non-

stationary signals, provided that an appropriate method such as 

EMD (Empirical Model Decomposition) is used to decompose 

the signals initially and that only physically meaningful 

Intrinsic Mode Functions (IMFs) are chosen. Overall, the 

research has demonstrated that many of the novel empirical 

vibration parameters assessed are suitable for damage 

identification (detection, localization and quantification), 

provided that they are applied to a suitably applicable vibration 

signal type, as per the criteria set out in Table 1, and provided 

that a suitable outlier detection method is chosen based on the 

distribution type of the extracted vibration parameter. Further 

investigation is required in the case of vehicle induced 

excitation case to adjust for the variability of induced loads of 

each vehicle passage. 

Table 3.  Vibration parameter variation at damage locations.  

Parameter DMG2 RCV DMG3 

CAV +9.1% +0.1% +19.8% 

CAD +10.2% -0.1% +22.2% 

EDI +8.9% +0.1% +36.1% 

EDC -0.4% 0.0% +13.8% 

IVI +10.31% -25.56% +36.40% 

Table 4.  Modal frequency variation. 

Mode DMG2 RCV DMG3 

1st  B. Mode -2.67% -0.13% +0.31% 

2nd  B. Mode +0.20% -0.25% -5.67% 

3rd  B. Mode -0.21% -0.87% -9.05% 

4th  B. Mode +0.22% -0.72% -6.87% 

5th  B. Mode +0.58% +0.19% -0.16% 
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ABSTRACT: This project investigates the performance of Distributed Optical Fibre Sensors (DOFS), more specifically the case 

of the Optical Backscattered Reflectometry (OBR) based system for the Structural Health Monitoring (SHM) of bridges and large-

scale structures. This technology has demonstrated promising results for monitoring applications in a wide range of fields but due 

to its novelty, still presents several uncertainties which prevent its use more systematically and efficiently in civil engineering 

infrastructures. This is particularly true for the application of this sensing technique to concrete structures due to their long-term 

deployment and exposure to extreme weather. Therefore, different laboratory experiments are devised where multiple aspects of 

the instrumentation of DOFS technology in civil engineering applications are assessed and scrutinized. This includes new 

implementation methods, and comparison and performance analysis of different bonding adhesives and their spatial resolution. 

The long-term performance of this sensing technology is also evaluated. Furthermore, the OBR system technology is applied to 

two real-world structures in Barcelona, Spain, where new imperative conditions, such as the long-term effect of temperature 

variation and its compensation, are addressed. Differing conclusions are drawn related to the capabilities and limitations of this 

optical sensing system in concrete structures.  

KEY WORDS: Distributed Optical Fibre Sensors (DOFS); Structural Health Monitoring (SHM); Concrete; Bridges; Monitoring.

1 INTRODUCTION 

Civil engineering infrastructures are subjected to degradation 

due to the passage of time in addition to a significant number 

of various external adverse actions, which compromise their 

structural integrity, and consequently the safety of its users. As 

of 2016, in the United States alone, 39% of the bridges in that 

National Bridge Inventory were built over more than 50 years 

ago, and 9.1% of the total number of bridges were deemed 

structurally deficient despite 188 million daily trips across 

these bridges. The most recent estimate of the backlog of 

rehabilitation for these infrastructures is at $123 billion [1]. 

Consequently, the development of measures that extend the 

lifetime period of civil engineering infrastructures is of great 

importance. In this way, assessment and maintenance strategies 

that can target and identify those structures in most needs of 

attention are highly in demand. In this context, the field of SHM 

has been widely studied and advanced for the past few decades. 

Nonetheless, SHM has not yet been implemented on a large 

scale and in a regular manner on civil engineering structures. 

One of the reasons being that there is still a deficit of reliable 

and affordable generic monitoring solutions [2]. 

The most common SHM systems have been based until now 

on traditional electric based strain sensors, accelerometers, and 

inclinometers among others, which present different challenges 

when applied in real-world conditions [3]. On the other hand, 

Optical Fibre Sensors (OFS), when compared with the 

conventionally used electrical sensors, provide the enhanced 

advantages of being immune to electromagnetic interference, 

withstanding a wide range of temperature variations, 

chemically inert and also being small and lightweight which 

facilitates its handling and transport [4]. It is in this way that 

these types of sensors have become one of the most popular 

research topics looking at its use in SHM practices. 

Furthermore, this technology has been mostly applied through 

the use of Fibre Bragg Gratting (FBG) sensors [5], which are 

point sensors. 

However, in the case of large-scale infrastructures, the 

number of point sensors necessary to obtain a complete and 

global strain monitoring, becomes impractically high. 

Additionally, for the specific case of concrete structures, where 

beforehand, it is practically impossible to know with certainty 

the exact location of possible crack formations, these point 

sensors present severe limitations. Also, in practical terms, a 

large number of sensors present the difficulty of requiring an 

associated large number of connecting cables making all the 

monitoring system more complex. In this regard, DOFS 

provide unique advantages allowing the strain and temperature 

monitoring of virtually every cross-section of the element 

where it is attached to, while requiring the use of just one single 

sensor and with it one connecting cable. 

2 DISTRIBUTED OPTICAL FIBRE SENSORS 

Due to the novelty of this technology, the use of DOFS in SHM 

of civil engineering infrastructures is still a relatively recent 

practice. These sensors share the same advantages of the other 

OFS, but as mentioned before, present the unique privilege of 

enabling the monitoring over greater length extents of the 

infrastructure and with a very short distance between each 

measuring point, in the order of millimetres. 

These sensors can be bonded or embedded to the structure to 

be monitored, and when temperature or strain variations occur, 

these changes are going to be transmitted from the material to 

the sensor, which then generates a deviation of the scattered 
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signal, which is being reflected within the fibre cable core. This 

is the phenomenon behind the distributed optical fibre sensing 

as defined by the interaction between the emitted light and the 

physical optical medium. Three different scattering processes 

occur, which are the Raman, Brillouin and Rayleigh scattering 

[6]. The research conducted within this project is focused on 

the capabilities and potential of this last scattering technique, 

more specifically in the form of the Optical Backscatter 

Reflectometry (OBR) since it provides an unprecedented 

spatial resolution (up to 1 mm) which makes it suitable for 

crack detection and localization in concrete structures. 

3 LABORATORY EXPERIMENTS 

After performing an initial literature review on the use of this 

technology in civil engineering infrastructures [6], an 

experimental design is undertaken. Currently, one of the major 

concerns related to the use of this technology is the strain 

transfer effectiveness between sensor and substrate material. 

Moreover, when the sensors are bonded on the surface, the 

challenge presented by the case of concrete structures due to 

the roughness and heterogeneity of its surface needs to be 

considered. Hence, the study and identification of the optimal 

bonding adhesive and alternative installation methods for these 

applications become essential for more widespread use of this 

technology in current and future concrete structures. 

Additionally, there is insufficient information regarding the 

long-term performance of these types of sensors in fatigue 

loading scenarios. For this reason, a set of laboratory 

experiments is devised to investigate these topics. 

 Performance assessment of embedded DOFS 

As mentioned before, one of the key challenges on the use of 

DOFS in reinforced concrete structures is related to the 

compromise between the required accuracy and mechanical 

protection of the sensor [7]. Therefore, it is decided to perform 

an experimental test with the main goal of assessing the 

performance and feasibility of deploying a thin polyimide 

coated low bend loss fibre in the rebar of RC members without 

previous mechanization. This setup is meant to provide better 

protection from the external environmental conditions to the 

fibre sensor without the need of a special thick coating, while 

assuring an enhanced stress-transfer between the monitored 

material and the sensor. 

As a result, after assessing the feasibility of the direct 

deployment of the DOFS sensor without previous 

mechanization of the rebar, through a tensile test, two single 

reinforced concrete beam specimens [100x180x800 mm] are 

instrumented with a 5.2 m length DOFS and then tested. The 

DOFS are bonded in each sample, initially to the rebar and, 

after hardening of the concrete, to the external surface,). The 

bonded segments are positioned in such a manner that strains 

are measured at the rebar and at multiple locations of the 

concrete surface (both in compression and tension) 

simultaneously. A single fibre is used. The main difference 

between the two RC beams is the bonding adhesive used for the 

instrumentation of the DOFS to the rebar, being cyanoacrylate 

in Beam 1 and a two-component epoxy in Beam 2. Figure 1 

shows that the DOFS perform very satisfactorily in all 

segments until the occurrence of cracking. 

 

 

Figure 1. Strains measured by DOFS on the embedded 

segment (FI) of each instrumented beam. 

In both beams, sometime after the occurrence of damage, the 

DOFS measurements start alternating huge positive and 

negative peaks at the crack location. In order to deal with the 

latter, it is proposed to perform a post-processing routine, 

where the inaccurate measurements are removed being 

identified by their inherent Spectral Shift Quality (SSQ), 

followed by a surface interpolation of the remaining accurate 

values. After completing this process, a good agreement is 

observed for both beams when comparing the strain values after 

cracking with what was measured by the strain gauges and with 

what was visually observed directly on the beam specimens for 

the corresponding load level. Additionally, the superior 

performance of the cyanoacrylate adhesive bonded segment in 

the rebar of Beam 1 p compared with the epoxy bonded one in 

Beam 2 is demonstrated. It is concluded that good results can 

be obtained within the undamaged stage of the specimen and 

that the proposed installation method can effectively detect and 

locate the damage formation once it is produced. For the 

following stage, a post-processing technique is proposed to 

eliminate the identified inaccurate peak values, which are 

originated after crack formation. This experimental campaign 

shows the feasibility of deploying a single polyimide coated 

Rayleigh OFDR based DOFS, simultaneously to the rebar and 
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external surface of a reinforced concrete element, as fully 

explained in [8]. 

 DOFS spatial resolution and adhesives comparison 
analysis 

As mentioned before, in order to obtain the optimal strain 

transfer between the sensor and the monitored material, the 

topic of its deployment is of considerable importance. In 

addition to the removal of any grease or dust present in the 

surface of the host material and the smoothening of the surface, 

the decision on the adhesive to bond the optical fibre sensor to 

the surface must be assessed. To this end, a laboratory 

experiment is devised where a single 5.2 m polyimide DOFS is 

attached to the surface of a reinforced concrete beam using four 

different adhesives: epoxy, cyanoacrylate, polyester, and 

neutral cure silicone and tested under a three-point load test. 

These adhesives are chosen based on previous experience of 

the research group and the available literature on the topic. The 

DOFS are bonded to the concrete performing a pattern with 

four equal segments (each one bonded with aforementioned 

selected adhesives) on the bottom surface of the beam  as per 

Figure 2, with the objective of inducing the same strain levels, 

allowing a direct comparison between them. Additionally, the 

influence of different spatial resolution inputs on the used 

DOFS system is assessed, given that an increased detail 

provided by an enhanced spatial resolution would be of interest, 

mainly for the case of sub-mm crack detection. 

 
Figure 2. Instrumented sensors at the tested concrete beam. 

3.2.1 Spatial resolution comparison 

To perform the analysis of the influence of different spatial 

resolutions, three separate, but identical, load cycles are 

conducted with different spatial resolution under a maximum 

applied a load of 11 kN and therefore, without inducing 

cracking. Three spatial resolutions are tested: 1 cm, 3 cm and 

1 mm, thus representing 520, 174 and 5191 measuring points 

respectively. The obtained results are depicted in Figure 3. It is 

observed how the data collected with a 1 mm spatial resolution 

present a significantly higher spatial variability when compared 

with the other two. Table 4 gives the nominal difference 

between these sets the values. 

Although the differences in mean value (µ) are very close to 

zero, the calculated standard deviations (σ) are very different 

between the analyzed sets. Moreover, even after applying a 

moving average filter to the initially measured data collected 

with the 1 mm, relatively erratic measurements remain when 

compared with the other data sets. Therefore, the researchers 

conclude that no real advantages are accomplished by using a 

sub-cm spatial resolution, being the use of 1 cm spatial 

resolution preferred when using this type of experimental setup. 

 
Figure 3. Strain measured for a load of 11 kN using different 

spatial resolutions. 

Table 4. Comparison of spatial resolution sets difference [All 

units represent microstrain (µε)]. 

Spatial 

Resolution 
Δ(1mm-3cm) Δ(1mm-1cm) Δ(1cm-3cm) 

Statistical 

Property 

Mean 

(µ) 

std 

(σ) 

Mean 

(µ) 

std 

(σ) 

Mean 

(µ) 

std 

(σ) 

Average 

DOFS 

segments 

-1.07 19.19 -1.23 19.34 0.29 3.38 

3.2.2 Different bonding adhesives comparison 

The performance of the different used bonding adhesives is 

assessed using the same load cycles as in the previous study of 

the spatial resolution influence (i.e., without inducing 

cracking). Figure 4 confirms that all bonded segments are able 

to follow the applied load correctly and present a good 

agreement with the data from the strain gauges. In fact, at the 

beam mid-span, where higher strain levels are produced, the 

higher difference between DOFS bonded segments and the 

strain gauge at that location is of 5.54 µε, while all others are 

close or below 2 µε, which corresponds to the strain resolution 

provided by the used DOFS interrogator system. Additionally, 

when assessing the measured strain spatial variability achieved 

by each bonded segment throughout the applied load sequence, 

it is observed how the silicone bonded segment presents 

smoother and more homogenous readings. This is related to its 

inherently lower elasticity modulus, which allows for a fibre 

adjustment movement within the adhesive. 

When analysing these adhesives for a load cycle where 

cracking was induced in the specimen and further loaded until 

rupture, it is verified that all four different bonded segments are 

able to effectively detect and locate the crack formation 

although with different performances. Whereas the polyester, 



                                                                                                                                                                    D5.2 - Final Report 

34 

 

epoxy, and cyanoacrylate bonded segments present strain peaks 

with narrow bases at the location of the crack (around 2 cm), 

the silicone bonded segment, while also displaying a strain 

peak at the crack location, it has a broader base (about 20 cm). 

This issue turns the detection of further cracks formations 

within this area (20 cm) impractical when using this particular 

bonding adhesive.  

 
Figure 4. Measured strain at beam mid-span by different 

bonding adhesives DOFS segments and Strain Gauge 2 (SG2). 

When continuing the assessment of how each segment 

performs after crack initiation, apart from the silicone bonded 

segment, all other adhesives present alternating positive and 

negative strain peaks at the crack locations, where only positive 

increasing strains corresponding to applied tension should be 

observed given that stresses in the bottom surface will be 

always tensile stresses. As in the previous experimental 

campaign, a post-processing routine is applied to remove 

unreliable values (i.e., the points where SSQ values are below 

the acceptable threshold of 0.15). Since negative values, which 

are not consistent with the expected tension being developed in 

the bottom surface of the concrete beam, still remain after this 

action, these values are also removed. In the end, a surface 

interpolation is performed replacing removed and inaccurate 

data points. With this operation, the silicone bonded segment 

presents the fewer identified inaccurate data points, leading 

therefore to fewer removed data from the original 

measurements. Nevertheless, the latter still presents a 

significantly wide area of influence for the developed crack, 

corresponding to almost 2/3 of the total length of the bonded 

segment. For the other segments, relatively more data were 

replaced, especially involving the removal of negative strain 

measurements. In conclusion, the neutral cure silicone can be a 

good option as a bonding adhesive for situations where the 

quantification of crack damage is not relevant or even where 

cracking is not foreseen as in prestressed concrete elements. 

Regarding the other adhesives, they can also be considered for 

the same situations as suggested for the silicone adhesive, 

although with a higher spatial variability and more susceptible 

to the differently sized aggregates in the concrete material. 

 Long-term performance of DOFS 

The experiment described here is not a completely independent 

campaign from the one detailed in the previous section, as it is 

conducted in the same period and using a very similar setup. 

The primary objective is to assess the accuracy and reliability 

of DOFS measurements over time when monitoring structures 

over a long-term period when several load cycles are applied. 

This contribution will add to the literature on the performance 

of Rayleigh based OFDR DOFS under fatigue loading, which 

is currently reduced to a few publications. A laboratory 

experiment consisting of 2 million load cycles induced on two 

reinforced concrete beams (FA1 and FA2), instrumented with 

Rayleigh based DOFS as in Figure 2, is devised. The applied 

load cycles replicate expected real-world conditions for the 

case of a standard highway bridge. No other work is found on 

the application to concrete structures under fatigue testing with 

this type of DOFS setup. Two different load stages are 

considered for the stress range of the load cycles. The lower 

value of the stress range correspond to the actuation of the 

structures’ self-weight and permanent loads, whereas the upper 

one correspond to the addition of the traffic load. The traffic 

load is represented by a 4-axle truck with a load of 120 kN by 

axle and multiplied by a dynamic factor of 1.3 as described in 

Fatigue Load Model 3 of EN 1991-2 [9].  

The main difference between the test in each beam is that for 

beam FA1 the load is applied directly to the beam in an un-

cracked condition, whereas for beam FA2, the beam is initially 

loaded statically until a 28 kN load (inducing in this way 

cracking), unloaded and then finally loaded with the same 

2 million cycles as beam FA1. The goal is to assess the fatigue 

performance in both un-cracked and cracked concrete, 

simulating the cases where the DOFS will be bonded to 

prestressed (no cracking) or reinforced (cracking) concrete 

bridges. The measured strain by the different segments of the 

DOFS at the beam midspan over the applied number of load 

cycles for beam FA1 is depicted in Figure 5. The DOFS 

measurements follow the strain gauge with a good agreement 

along the number of cycles. In addition, it is important to point 

out that the applied load frequency was of 4 Hz, the sampling 

acquisition of the DOFS was of one measurement every five 

seconds (i.e., 0.2 Hz), and the readings from the strain gauges 

were collected at 1 Hz. This partly explains the difference 

between both sets of sensors, for a magnitude of the applied 

strain range of around 12 µε.  

 
Figure 5. Strain measured at beam midspan for test in beam 

FA1. 

In the case of beam FA2, the DOFS measurements present a 

good agreement with the strain gauge at the same location 
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(SG2) until cracking was initiated. After the cracking detection, 

all DOFS segments and strain gauges measurements follow 

with more or less agreement the applied load until the 

beginning of the 2 million load cycles application. Nonetheless, 

it is observed how after the post-cracking stage and unloading 

stage, the strain measurements slightly diverge between the 

different DOFS segments and the strain gauges, especially in 

the case of the silicone bonded segment. When assessing the 

measured strain during the 2 million load cycles, a reasonable 

agreement is again found with the data measured by the strain 

gauges. Summarizing, encouraging results on the use of this 

novel technology are obtained for long-term monitoring 

periods with fatigue-induced behaviour. The distributed optical 

fibre technology displays a good performance under fatigue 

loading for both the un-cracked and cracked scenarios by 

comparison to strain gauges’ measurements. 

4 REAL WORLD APPLICATIONS 

As a result of the internship at COTCA during the TRUSS 

training period, it becomes possible to assess and interpret the 

results of the application of this novel technology to two real-

world existing structures located in Barcelona, Spain. This is 

an excellent opportunity to evaluate the feasibility of 

implementing these sensors in real scenarios, which present 

different challenges in comparison to the case of laboratory 

experiments in controlled environments, as fully documented 

in [7]. 

 Sant Pau hospital 

The first application of DOFS is conducted at the historical and 

UNESCO world heritage site Sant Pau Hospital, one of the 

most superb examples of the Catalan architectural modernism 

movement. In one of the buildings, some dangerous cracks 

appeared in brick masonry columns on one of its floors. 

Therefore, after a structural assessment, it was decided to 

replace two of those columns by new structural elements made 

of steel. This procedure implied the installation of a temporary 

bearing steel structure around the columns to support the load 

while the masonry element was cut, removed and substituted 

by the new steel profile columns. Afterwards, the load was 

transferred from the temporary bearing structure to the new 

columns. Moreover, the floor above these elements was being 

used to treat and accommodate recovery drug patients and their 

relocation was not possible. As a consequence, it was necessary 

to perform the replacement of the fault columns while the 

building was in regular functioning service. For this reason, a 

structural monitoring scheme was necessary in order to ensure 

that no harm was being inflicted in the building occupants due 

to the conducted restoration works. 

Consequently, a 50 m long DOFS is deployed in the upper 

masonry vaults ceiling, which using a spatial resolution of 

1 cm, allowed for the monitoring of 5000 different points. The 

use of DOFS here, being able to monitor such a large area using 

just one sensor, clearly constitutes a more cost-effective 

solution than a traditional set-up based on a large number of 

point sensors. The monitoring procedure is conducted over 18 

days. Hence, it is possible to conclude that the replacing 

operation caused an increment (in compression) of the strain in 

the vault in the order of 80 µε, which was almost uniform along 

the whole roof. During the entire duration of the rehabilitation 

works, the structural response is under the serviceability and 

ultimate limit states, given that the strain increment generated 

minimal stresses of 0.14 MPa compared to the characteristic 

compressive strength of 3 MPa of the material. Moreover, there 

are not new formation of cracks detected. The implementation 

of DOFS technology in this historic structure shows that it is 

possible to monitor the strains developed as a result of 

rehabilitation works and the structural safety while maintaining 

the building in operation as required by the owner.  

 Sarajevo bridge 

The second application of DOFS takes place at the Sarajevo 

Bridge, shown in Figure 6. This is a structure located over one 

of the main roadway entrances of the city of Barcelona, Spain 

with high traffic flow during peak hours. It is a two-span bridge 

with span lengths of 36 and 50 m and where each span is built 

up by three box-girder prestressed concrete beams connected 

by an upper reinforced concrete slab. 

 

 
Figure 6. Sarajevo bridge after the rehabilitation works. 

This structure was subjected to rehabilitation works to enlarge 

the existing deck while introducing new steel elements to 

increase pedestrian traffic and improve its aesthetics. Due to the 

high traffic volume in the bridge and the underneath lanes, it 

was not possible to close the bridge to traffic or place temporary 

support beneath the rehabilitated structure. As in the previous 

real-world case, it was compulsory to perform the required 

rehabilitation works while maintaining the structure in its 

normal service operation without the possibility of adding 

temporary support. Given the strategic importance of this 

structure to the city’s road network, it was paramount to 

perform close monitoring follow up of the induced stresses 

during and after the execution of the works. 

The adopted solution consists of a pair of 50 m length DOFS 

(DOFS 1 and DOFS 2) placed in the internal bottom surface of 

the box-girder beam, that is most susceptible to a significant 

load increment in the 36 m length span. The monitoring period 

in this application was between June of 2015 and February of 

2016 (8 months). The DOFS measurements are conducted in 

chosen days throughout this period, being the maximum and 

minimum measured values in each of those dates used to 

generate envelope response graphs. One important aspect of 

this application is that, due to the vast duration of the 

monitoring period, the influence of temperature on the readings 

needs to be considered. Both the refractive index of the 

backscattered light and the materials which compose the DOFS 

are dependent on these temperature changes, so a correction of 

this thermal-induced error on the monitoring output is required. 

Using the data from 14 m of the DOFS, which are not bonded 

to the structure, it is possible to perform the thermal 



                                                                                                                                                                    D5.2 - Final Report 

36 

 

compensation. It is noticed that the main responsible for the 

strain variation measured in the structure is the decrease of 

temperature between summer and winter, which is translated 

into an uniform shortage of the box-girder. Moreover, these 

stress variations do not induce changes in the bridge behaviour, 

given that they are acceptable for these types of structures and 

increase the compression state of the concrete in a limited and 

permissible amount. 

5 CONCLUSIONS 

This research has investigated the use of the promising novel 

technology of DOFS in SHM applications of bridges and large-

scale structures. Different experiments and analysis have been 

conducted within the TRUSS project in order to provide more 

relevant results and conclusions as guidelines for its future use 

in SHM of concrete structures. In summary, the following 

contributions have been achieved: 

• A novel implementation technique of the fibre to a 

reinforced concrete member has been proposed and 

positively tested. 

• Different bonding adhesives for deployment in concrete 

members have been performed and assessed. 

• A study of the influence of the spatial resolution in DOFS 

measurements have been conducted, being 1 cm spatial 

resolution the most convenient one. 

• The performance of DOFS when applied to RC members 

under a high number of load cycles has been evaluated in 

order to replicate the long-term reliability of this 

technology when applied to a standard bridge structure. 

• The deployment of this technology in two real-world 

structures in Barcelona where new imperative conditions, 

such as the long-term effect of temperature variation and 

its compensation, have been addressed. 
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ABSTRACT: This project considers two different strategies for bridge damage detection and localization using indirect deflection 

and velocity measurements by an instrumented vehicle, and direct deflection measurements on the bridge. First, curvature - the 

second spatial derivative of deflection - is proposed as an indicator of damage. The rate of the curvature is also considered as this 

can be measured using Laser Doppler Vibrometers (LDVs). Curvature is proportional to the reciprocal of the flexural stiffness of 

the bridge cross-section. Consequently, a sharp increase in bridge curvature results from a local loss of stiffness and indicates 

damage of the type associated with a bridge strike. The second strategy employs bridge deflection for the direct calculation of the 

bridge stiffness profile using the theorem of virtual work. As deflection can be calculated for a bridge with a known stiffness 

profile, back-calculation of the stiffness can be formulated as an inverse problem. 

As part of the first strategy, it is proposed here to measure curvature using sensors in a passing vehicle over a bridge (drive-by 

bridge monitoring). Instantaneous Curvature (IC) is investigated as a means of finding a local loss of stiffness in a bridge using 

drive-by measurements. Absolute displacements of the bridge cannot be directly measured from the vehicle. However, it is 

assumed that relative displacements between vehicle and bridge can be measured. It is shown that a sharp increase occurs at the 

damage locations. Vehicle-bridge interaction is modelled using the Finite Element (FE) method. Road profile and white noise are 

considered as the main sources of inaccuracy. The use of LDV measurements taken from a specialist vehicle is proposed as an 

alternative for the first strategy. The use of LDVs is inspired by the Traffic Speed Deflectometer (TSD), a truck instrumented with 

several LDVs which is used for road pavement monitoring. In this project, the concept of using a TSD is explored for bridge 

damage detection. It is assumed that relative velocities between bridge and vehicle can be directly obtained from the LDVs.  The 

Rate of Instantaneous Curvature (RIC), which is the first derivative of IC respect to time, is introduced as a bridge damage 

indicator. RIC could be obtained using simulated relative velocity measurements. A TSD is modelled as a half-car using the FE 

method. Provided measurements are sufficiently accurate, bridge damage is detectable by comparing the RIC measurements from 

healthy and damaged bridges. Moving Average Difference (MAD) is introduced based on RIC to make the method robust when 

noise is included in the measurements. It is shown that, in simulations, the damage location can be detected using the MAD in the 

presence of noise. 

A novel method is proposed for the direct calculation of bridge stiffness from deflection measurements as part of the second 

strategy. The relation between bridge deflection and stiffness is well known from the theorem of virtual work. Hence the bridge 

stiffness profile, represented as a vector of point stiffnesses, can be theoretically obtained by solving an inverse problem using 

drive-by measurements of deflection. However, the inverse problem is ill-conditioned which means that the final solution is 

profoundly affected by noise. Therefore, a filtering method based on the Blackman window is employed to solve the ill-

conditioning. A numerical case study is employed to evaluate the effectiveness of the approach using bridge deflections and 

measurements collected from simulated displacement transducers. It is also assumed that axle spacings of vehicles are provided. 

The approach provides an opportunity to use measurements from random traffic passing over a bridge. This has the considerable 

advantage that measurements can be repeated every time a vehicle crosses the bridge. Absolute deflection measurements at a fixed 

location (e.g., mid-span) are simulated, and the influence lines found from every (simulated) passing truck are converted into a 

stiffness profile. This technique provides constant monitoring of the bridge and cracks can be detected after the passage of a few 

vehicles. 

KEY WORDS: Bridge damage detection; Structural Health Monitoring (SHM); Curvature; Instantaneous curvature; Rate of 

instantaneous curvature; Damage localisation; Traffic Speed Deflectometer (TSD); Stiffness; Drive-by monitoring.

1 INTRODUCTION 

There is an increasing concern about bridge structural health 

monitoring methods to identify whether a bridge is in good 

condition. Highway bridges are particularly vulnerable due to 

the rising trend of heavy loads and traffic flow on the road 

networks [1-4]. In addition, aging and overloaded heavy trucks 

crossing bridges are a prevalent issue [5-9]. Solutions to these 

problems have been proposed, but the most popular involves 

visual inspection [10]. Among the inconveniences of this 

method, it can be identified the lack of accurate damage 

quantification and the infrequent surveys due to the high costs 

[11]. In consequence, different possibilities to sensor the bridge 

have been studied. The most popular alternative involves using 

direct instrumentation installing the sensors on the bridge [12]. 

Wu et al [13] install a long-gauge FBG (Fiber Bragg Grating) 
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sensor in Xinyi River Bridge in China to measure strain. Area 

values of strain histories are used to obtain damage location and 

extent. Whelan et al [14] measure strain and acceleration from 

accelerometers and strain transducers. Embedded software 

allows a wireless solution that facilitating large-scale structural 

monitoring. 

Recently, indirect monitoring (or drive-by) is used as an 

alternative strategy in which the evaluation of bridge condition 

is performed from a moving vehicle [12,15]. Elhattab et al [16] 

conduct a numerical analysis using accelerations from an 

instrumented vehicle to calculate the bridge displacement 

profile. Damage location can be extracted from the apparent 

profile. Tan et al [17] adopt drive-by accelerations to 

implement a wavelet analysis. Drops in bridge frequency are 

obtained as damage increases.  

One of the major objectives in bridge engineering is damage 

detection and location, commonly referred to as level 2 damage 

identification [18]. Much research has been done on this topic 

[11,18-22]. To obtain damage location, the curvature is a 

common parameter [23]. OBrien et al [24] perform a simulation 

of a passing vehicle measuring deflections. Curvature 

calculated from these deflections is used to locate damage. The 

TSD has been proposed as a suitable vehicle for bridge damage 

detection [11,25,26]. A TSD [27] is a specialized vehicle 

design for road pavement assessment. High axle weights are 

used to create a deflection basin. LDVs installed in the vehicle 

are used to measure relative velocities between the road 

pavement and the vehicle [28]. 

Bridge damage assessment by calculating the stiffness profile 

provides level 3 damage identification, focusing on damage 

extension and location [29]. One of the most popular methods 

is the use of Cross entropy (CE). An iterative procedure is 

involved in the use of CE in which random data are generated 

with the aim of improving the result at every iteration step [30]. 

Dowling et al [31] use CE to calibrate the stiffness and to 

reduce the error in the Moving Force Identification (MFI) 

problem. Gonzalez et al [32] estimate the stiffness profile of an 

experimental beam using CE. Unfortunately, the algorithm is 

susceptible to noise. An alternative to Cross-Entropy can be 

obtained in the Genetic Algorithm (GA). GA starts by usually 

assuming a random population and improved reproductive 

solutions from this initial population are obtained [33]. Chou 

and Ghaboussi [34] use the GA and the Implicit Redundant 

Representation (IRR) to detect damage extension and location.  

This chapter covers two methods for bridge damage 

localisation based on curvature and a method for damage 

location and quantification. The first method proposes 

Instantaneous Curvature (IC) to locate damage assuming that 

relative deflections between road pavement and vehicle can be 

measured. The second method is based on the IC, but it is 

adapted to the TSD. Considering that relative velocities can be 

obtained from the TSD, Rate of Instantaneous Curvature (RIC) 

is proposed. RIC is the first derivative respect to time of IC. The 

simulations consider measurements obtained from LDVs as a 

real TSD would do.  

The third method performs damage location and 

quantification by stiffness calculation. Stiffness profile is 

calculated by inverting the relationship between stiffness and 

deflection in the theorem of virtual work. The method uses a 

random population of trucks traversing the bridge. The 

analytical model considers three sensors that measure 

deflection at different locations on the bridge. The novelty of 

this work is that no Bridge Weigh-in-Motion system is used to 

measure the axle weights of the random population of trucks. 

2 INSTANTANEOUS CURVATURE (IC) FOR BRIDGE DAMAGE 
DETECTION 

 Method explanation 

Three measurements at different locations are needed for the 

calculation. A distance between sensors of ∆𝑥 = 1 is 

considered to be a realistic approach. This distance is assumed 

to be constant for all the sensors. The curvature of a function is 

commonly defined as its second derivative. Consequently, 

curvature can calculated based on the central difference method 

given by Equation (1).  

 

 𝐼𝐶(𝑥, 𝑡) =
𝑢(𝑥−∆𝑥,𝑡)−𝑢(𝑥,𝑡)+𝑢(𝑥+∆𝑥,𝑡)

∆𝑥2
           (1) 

 

where 𝑡 is the time.  

As IC is measured from a passing vehicle, time is related to 

the position by the speed 𝑐 =
∆𝑥

∆𝑡
. However, normal curvature 

calculation is performed only at a particular time and IC is 

considering this with the use of the three sensors. Random noise 

is added to the model based on the maximum deflection of the 

bridge. Equation (2) defines the simulated noisy signal. 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝐸𝑃 × 𝑁𝑛𝑜𝑖𝑠𝑒 × 𝑢𝑚𝑎𝑥          (2) 

 

where 𝑢𝑛𝑜𝑖𝑠𝑒  represents the noisy signal, 𝑢𝑚𝑎𝑥 is the maximum 

deflection of the bridge, 𝐸𝑃is the noise level (0 for 0% noise 

and 1 for 100% noise) and 𝑁𝑛𝑜𝑖𝑠𝑒   is a random vector with zero 

mean value and unit standard deviation. The noise of each of 

each sensor is considered to be independent, affecting the 

accuracy severely. 

 Results 

As the vehicle travels, the deflection responses are measured 

by a sensor. Before and after the second axle, two sensors are 

used at distance 𝑥 and 1 m (∆𝑥). Figure 1 shows the results of 

IC obtained for a defined damage situation. Loss of stiffness at 

specific locations is the approach adopted to model damage 

here. It can be seen in Figure 1(a) that 20% loss of stiffness is 

difficult to be detected if the damage is close to the support and 

1% noise is considered. At other damage locations and greater 

damage extents, IC is able to locate the damage. Figure 1(b) 

considers a 50% stiffness reduction for the same damage 

locations as in Figure 1(a). The results are improved by 

assuming that the specialised vehicle is going to cross the 

bridge ten times and calculating the average. 

3 THE FEASIBILITY OF USING A TSD FOR BRIDGE DAMAGE 
DETECTION USING RIC 

 Method explanation 

Although IC can locate damage, deflection is difficult to be 

measured from a vehicle. However, LDVs installed in the TSD 

are able to measure relative velocity between vehicle and 

bridge at different points. Relative velocity contains 

information of both vehicle and bridge components. Based on 
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IC, RIC is obtained using relative velocities instead of 

deflections. 

 
(a) 

 
(b) 

Figure 1. Damage localisation using IC for 1% noise and: (a) 

20% loss of stiffness, (b) 50% loss of stiffness. 

 

A crack model to simulate bridge damage is used based on the 

assumptions described by Sinha [35]. As for the IC, three LDVs 

are needed to calculate one RIC: 

 

𝑅𝐼𝐶(𝑥, 𝑡) =
𝑞̇(𝑥−∆𝑥,𝑡)−2𝑞̇(𝑥,𝑡)+𝑞̇(𝑥+∆𝑥,𝑡)

∆𝑥2
          (3) 

 

where 𝑞̇(𝑥, 𝑡) is the relative velocity when the central laser 

vibrometer is located at a distance of x from the left end of the 

bridge. Six sensors are used, totalising four RIC calculations. 

These four RICs are used to improve the accuracy of the 

measurements by calculating the mean 𝑅𝐼𝐶𝑎𝑣 . A moving 

average filter is proposed as a damage indicator based on 

𝑅𝐼𝐶𝑎𝑣 . Measurements at healthy (𝑅𝐼𝐶𝑎𝑣
ℎ𝑒𝑎) and damaged 

(𝑅𝐼𝐶𝑎𝑣
𝑑𝑎𝑚) states are used to remove high-frequency effects to 

calculate Moving Average Difference (MAD):  

 

𝑀𝐴𝐷(𝑥) =

1

𝑧
∑ 𝑅𝐼𝐶𝑎𝑣

𝑑𝑎𝑚(𝑥+𝑖𝑑𝑥)
𝑖=
𝑧−1
2

𝑖=−
𝑧−1
2

−
1

𝑍
∑ 𝑅𝐼𝐶𝑎𝑣

ℎ𝑒𝑎(𝑥+𝑖𝑑𝑥)
𝑖=
𝑧−1
2

𝑖=−
𝑧−1
2

𝑚𝑖𝑛⁡(𝑅𝐼𝐶𝑎𝑣
ℎ𝑒𝑎)

×

100⁡(%)              (4) 

where 𝑧 is the number of points used for the moving average, 

and 𝑑𝑥 is the sampling interval in space. 𝑧 = 51 is considered 

to filter the 𝑅𝐼𝐶𝑎𝑣
𝑑𝑎𝑚 and 𝑅𝐼𝐶𝑎𝑣

ℎ𝑒𝑎. This is equivalent to filtering 

over 1 m length of the bridge. 

 Results 

In Figure 2, the MAD attenuates the fluctuations due to the 

phase shift. Noise is added to the model based on the ideal noise 

of the LDVs. 20% of the bridge depth crack (50% loss of 

stiffness) is used at every damage location. Figure 2 shows 

MAD calculated from noisy relative velocities. Damage 

locations are obtained for single and multiple damage 

situations. The crest of the function indicates the damage 

locations. Figure 2(b) shows that multiple damages are also 

located, but the second peak is lower compared to the first one. 

 
(a)

 
(b) 

Figure 2. MAD for damage detection in the case of: (a) a 

single damage location, (b) two damage locations. 

4 BRIDGE DAMAGE DETECTION USING RANDOM TRAFFIC 

 Method explanation 

Deflection measurements are simulated at three different 

locations to calculate the stiffness (EI) profile of the bridge. A 

3% noise normal distribution respect to the maximum 

deflection of the bridge is used. The relation between deflection 

and stiffness is set in the well-known theorem of virtual work. 
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In this theorem, a virtual unitary force is applied at the point in 

which the deflection is calculated. The theorem of virtual work 

can be expressed as a matrix product as shown by Equation (5): 

 

             {𝛿}𝑇×1 = [𝑃]𝑇×𝑁 × {𝐽}𝑁×1            (5) 

 

where {𝛿} is a column vector representing the histogram of 

deflections measured by a sensor at every time step. [𝑃] is a 

matrix that contains the product of bending moments (real and 

virtual) in every element and at every time step. {𝐽} is a column 

vector equating the reciprocals of the stiffness at every analysed 

location. 𝑇 and 𝑁 represent the total number of time steps and 

the total number of analysed locations respectively. In 

pursuance of stiffness profile calculation, Equation (5) has to 

be inverted. As [𝑃] is not a squared matrix, a direct inversion 

cannot be done. For this reason, Moses algorithm [36] is 

adapted to this equation. Moses algorithm is used to minimise 

the objective function of the square of the differences between 

measured and theoretical deflections as per Equation (6). 

 

𝐸 = 𝑚𝑖𝑛[({𝛿} − [𝑃]{𝐽})2]            (6) 

 

where 𝐸 in the error that has to be minimised.  

The minimum is calculated by deriving the squared of the 

differences. As a result, a squared matrix is obtained and 

Equation (5) is transformed into Equation (7): 

 
{𝛿𝑀}𝑁×1 = [𝑃𝑀]𝑁×𝑁 × {𝐽}𝑁×1           (7) 

 

where {𝛿𝑀} and [𝑃𝑀] represent the equivalent vector and matrix 

obtained using Moses algorithm.  

Stiffness profile can be calculated by [𝑃𝑀] matrix inversion. 

However, this system of equations is ill-conditioned. It is well-

known that adding a value to the main diagonal improves the 

condition of a matrix at the cost of obtaining a solution further 

from true solution [37]. In this project, a matrix based on the 

Blackman window is added to the original matrix instead of a 

simple diagonal matrix. The main advantage of using the 

Blackman window matrix is its ability to maintain the 

maximums and the minimums of the true solution. The 

algorithm can be split into two blocks, as shown in Figure 3.  

 

Figure 3. Flow chart of the algorithm for static deflections. 

 

In Block A, an iteration-optimisation process is applied to 

obtain an estimation of the axle weights for each vehicle. The 

iteration-optimisation starts with a guess of the Gross Vehicle 

Weight (GVW) based on the average of the expected 

population of vehicles. The mean GVW used is 160 kN as a 

first guess. Two optimisation steps are used in the iteration 

process. The first step calculates the stiffness reciprocal values 

based on the axle weights prediction. These axle weights are 

used to calculate the bending moments created by the vehicle 

in the [𝑃] matrix of Equation (7). Conjugate gradients 

optimisation is used to obtain the solution from the least 

squares minimisation. Axle weights are calculated in the 

following step applying Moses algorithm. The optimised 

reciprocals of the stiffness of the previous step are used. The 

iteration-optimisation process is applied regardless of the 

deflections being dynamic or static.  

The second part of the algorithm (Block B) uses the 

information of all the vehicles to calculate the stiffness profile. 

Ideally, when static deflections are measured, only one batch of 

vehicles is needed to assess the bridge (Figure 3). The 

histograms of deflections of all vehicles in each of the sensors 

are averaged. Consequently, the mean of all the [𝑃] matrices is 

calculated using the axle weights in Block A. This [𝑃] matrix 

is adapted to the mean deflection, and the {𝐽} vector in Equation 

(7) can be obtained by adding the Blackman matrix to improve 

the [𝑃] matrix condition. 

Obtaining the stiffness profile from dynamic deflection also 

requires the use of a different batch of vehicles for a previous 

health state of the bridge (Figure 4). The use of the extra batch 

of vehicles allows the calculation of a deflection based on a 

prismatic vector. This assumption considers that, for the 

previous condition analysis of the bridge, the stiffness profile 

is constant at every analysed location. A deflection with no 

dynamic influence is obtained, allowing more accurate 

estimation of the mean deflection history. To calculate the 

deflection caused by the damage, the difference between the 

two first mean deflections is calculated. The subtraction 

removes most of the dynamics caused by the velocity of the 

random traffic population.  

 

Figure 4. Flow chart of the algorithm for dynamic 

deflections. Steps 5-7 are different from Figure 3. 

 

This deflection contains information about the damage location 

and extent, but it is noisy, and dynamics still influence it. A 

moving average is applied to the deflection difference, filtering 

the noise and the dynamics. This deflection difference is added 

to the deflection with no dynamic influence. The total 
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deflection is used as in the static case and the stiffness profile 

can be calculated from this deflection and the [𝑃] matrix of the 

damaged batch. 

 Results 

Repeatability and consistency of the stiffness profile have to be 

checked as random traffic is used. To analyse if the calculated 

stiffness profile is acceptable, 10 batches of 1000 trucks are 

used. In Figure 5, the batches are analysed for three scenarios. 

Figure 5(a) shows that all the calculated stiffness profiles are 

always close to the real values. The mean of all the histograms 

of stiffness is significantly closer to the actual damage scenario 

than individual batches. It is shown that in spite of the effect of 

dynamics and noise, no false positives are obtained in any of 

the runs. Similar conclusions can be extracted from the damage 

scenarios in Figures 5(b) and 5(c). The damage location is 

detected in both cases, and damage extent can be obtained. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Ten different runs using the stiffness 

calculation for: (a) non-damaged bridge, (b) a 5% depth 

crack at 7 m, (c) a 10% depth crack at 14 m. 

 

5 CONCLUSIONS 

An instantaneous curvature denoted by IC has been used for 

drive-by bridge damage location. It has been shown that IC can 

detect the damage and localise it in a noisy environment. To 

adapt it to a specialised vehicle, the curvature has been 

calculated based on relative velocities. Therefore, the rate of IC 

or RIC has been used to locate damage with a similar effect to 

the IC. A moving average difference, abbreviated as MAD, has 

been proposed to filter the difference in phase out. MAD 

provides the damage location taking the noise from the LDVs 

into account.  

A novel method that calculates the stiffness profile using 

bridge deflections due to random traffic has been explained 

using a numerical model. The key novelty here is that there is 

no need to measure random traffic axle weights to detect 

damage. This method has allowed for level 3 damage detection, 

i.e., estimation of location and extent of the damage. Further 

research is needed to test these concepts in real highway 

bridges. 
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ABSTRACT: This project aims to assess the impact of road surface characteristics, such as unevenness and macrotexture, on the 

fuel consumption of heavy-duty vehicles, such as trucks, using a ‘Big Data’ approach. In the past, several studies claimed that 

road pavement in poor condition could increase road vehicle’s fuel consumption. However, in these studies, only a few vehicles 

were tested on selected road segments and under specific drive-cycle conditions, which may not produce results fully 

representative of real driving and network level conditions. For this reason, there is still a high level of uncertainty in the topic, 

which does not allow road managers to account for the extra costs and environmental impact that this can produce. Here, the 

potential for secondary use of the large quantities of data from standard sensors installed on modern trucks and information from 

the database of road agencies is investigated to assess the impact of road surface characteristics on vehicle fuel economy in the 

United Kingdom. Advanced statistics, data mining, and regression techniques have been combined to develop a new methodology 

based on ‘Big Data’ to provide pavement engineers and road asset managers with robust model prototypes capable of giving more 

reliable estimates about the impact of roughness and macrotexture on truck fleet fuel consumption. This chapter summarises 

findings over the last three years, points out possible implications of the results at the strategic and managerial level, and discusses 

future developments of the project. 

KEY WORDS: Fuel consumption; Big data analysis; Road asset management; Machine learning.

1 INTRODUCTION 

Road transport is one of the critical contributors to the 

economic growth of countries. However, since road vehicles 

rely on fossil fuels, the sector also represents one of the highest 

contributors to the emissions of pollutants [1]. Recent statistics 

show that road transport contributes about a quarter of the total 

emissions of Greenhouse Gases (GHGs) in Europe and 

worldwide [1]. 

In the past, several studies claimed that due to their effect on 

rolling resistance [2-4], road surface characteristics such as 

roughness and macrotexture can impact fuel consumption by 

up to 5% [2,5-11]. This could be of particular interest for 

governmental authorities and road managers since, if poor 

conditions of the road surface affect vehicle fuel consumption, 

maintenance will represent an opportunity to reduce costs and 

emissions of GHGs from the road transport industry 

significantly [5,11-13]. This, at a global level, implies 

significant reductions of costs and emissions of pollutants from 

the road transport industry, with possible significant direct and 

indirect benefits for society, and therefore, represents an 

opportunity which cannot be neglected [13-17]. However, in 

the past, researchers tested only a few vehicles driven at a 

relatively constant speed [8,9,18], or performed coast-down 

measurements [7,19-21] on selected and short road segments 

and, for this reason, their conclusions cannot be considered 

fully representative of real driving and network level 

conditions. Because of this, there is still a high level of 

uncertainty in the topic, and road managers cannot justify a re-

evaluation of the current road maintenance strategies. 

In this project, the impact of road surface characteristics on 

truck fleet fuel consumption is assessed. A ‘Big Data’ approach 

is undertaken combining advanced statistics, neural networks 

and other machine learning techniques to point out the complex 

correlations existing between road surface characteristics and 

fuel consumption [22-27]. In particular, secondary use of data 

from standard sensors [28] installed on modern trucks is made, 

and analysed in combination with data from the databases of 

road asset managers and meteorological agencies to model how 

fuel consumption is affected by roughness, macrotexture of 

road surfaces and other factors. This represents a more holistic 

approach, which allows investigation of the variation of fuel 

consumption under conditions representative of real driving. In 

particular, new models capable of estimating the effect of road 

surface characteristics on truck fleet fuel consumption are 

developed, and their performance improved throughout the 

project in conditions representative of typical motorways and 

primary roads in the United Kingdom. Additionally, thanks to 

the standard nature of the data used in the study and availability 

of these (or similar) at international level, the developed 

methodology promises to be able to provide answers in regards 

to the impact of road surface characteristics on vehicle fuel 

economy globally. That offers an opportunity to investigate the 

performance of the road infrastructure regarding vehicle fuel 

economy; it will support engineers’ decisions towards the 

review of the current road maintenance policies, and, in the 

future, it may help drivers in selecting the most eco-friendly 

route between two locations. Although in its current state the 

developed method might be applicable only to trucks and 

heavy-duty vehicles, future standardization of sensors for cars 

and other vehicle types may extend its applicability. 
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The present chapter summarizes results of the research work 

carried out within this project, highlighting implications of its 

results at a strategic and managerial level, and discussing 

possible future developments. 

2 BIG DATA 

When data are collected in a large volume, from a variety of 

sources of unknown quality or veracity, streamed at high 

velocity, it is common to refer to them as ‘Big Data’ [29]. 

Today, companies in any sector collect vast quantities of 

information from disparate sources. For example, truck fleet 

managers and manufacturers do that to monitor the 

performance of their vehicles, plan maintenance and optimize 

operational costs. That is done thanks to SAE J1939 sensors 

[28], which are installed as standard on modern trucks and that 

measure geographical position, vehicle weight, the 

performance of the engine and fuel consumption, among other 

parameters. 

Similarly, road agencies periodically collect data about the 

condition of the road infrastructure by means of monitoring 

vehicles [30]. This includes measurements of road geometry 

(e.g., gradient, crossfall, radius of curvature, etc.) and road 

conditions, which in England are measured as Longitudinal 

Profile Variance (LPV) at 3, 10 and 30 meters wavelengths for 

roughness and as Sensor Measured Texture Depth (SMTD) for 

macrotexture [30]. This is different from international 

standards which use International Roughness Index (IRI) for 

roughness and Mean Depth Profile (MPD) for the 

macrotexture, but other studies showed good correlation 

between these measurements [31,32]. Collection of this 

information allows Highways England and road agencies in 

general to plan future road works and maintenance of the 

infrastructure [30]. In order to assign road conditions from road 

agencies to truck performance data from truck fleet managers, 

geographical filters are applied. For instance, given a certain 

journey of a truck along a particular road segment between 

points A and B, the average of LPV and SMTD for that specific 

road segment are assigned to that journey of that truck. That 

allows comparison of fuel consumption with road condition 

measurements and inclusion of that information in the 

developed fuel consumption models. 

Meteorological agencies collect real-time data about the 

weather to provide the public and industry with information 

about the current and future meteorological conditions. This 

data is attached to a truck performance by assigning 

information from the nearest weather station to each journey. 

These data can then be considered in the development of fuel 

consumption models, including investigating the variation of 

fuel consumption in different weather conditions such as in 

summer and winter, rain and/or wind, etc. 

The idea behind this project is that using a large amount of 

information from these various sources, might offer the 

opportunity to model truck fleet fuel consumption and 

understand how this varies with changes in road surface 

characteristics and other factors such as meteorological 

conditions. The data are provided by Microlise Ltd and TRL, 

two privately owned companies involved in the project, which 

allowed the use of these data for research purposes only. 

Additionally, in a final stage of the project, meteorological data 

are collected from the Met Office, the weather forecast agency 

in the UK. This is used to investigate the effect of air 

temperature, atmospheric pressure, humidity, rainfall and wind 

speed on truck fleet fuel consumption. 

3 METHOD 

In the past, fuel consumption models have been developed 

[9,11,33-35] with the aim of estimating the impact of road 

surface conditions on vehicle fuel economy, based on physical-

mechanistic principles to be used in road asset management 

applications. However, due to improvements in vehicle 

technology and continuous deterioration or changes in road 

pavement conditions, these models generally require constant 

re-calibration. In the past, that has been done by testing a few 

vehicles under selected pre-defined conditions, along with 

selected, short road sections. This facilitates accurate and 

interpretable models but may not allow the model to give 

reliable estimates in regards to situations different from those 

tested. This may represent a limitation for the traditional 

approach, which may not produce models representative of real 

driving and network level conditions. For example, recent 

studies showed that existing models recently developed or 

calibrated in Europe [11,36,37] are already obsolete and require 

re-calibration for them to be used to make decisions at 

managerial level [38-40]. For this reason, currently available 

tools are considered unreliable and rarely used for maintenance 

planning in practice. 

This is why within this project a different approach is 

adopted. A large quantity of the data available in the databases 

of truck fleet managers, truck manufacturers, road agencies and 

weather forecast institutions are collected to derive models 

capable of taking into consideration the effects of various 

factors including road surface conditions. In an initial phase of 

the study, linear regression models are developed [12,23,24]. 

These models are built to produce a baseline for performance, 

which allow interpretation and comparison with results from 

previous studies adopting similar techniques to model road 

vehicles’ fuel consumption [8,9,41-43]. In a second phase, 

advanced analytics are used to boost the performance of the 

developed models and take advantage of the large quantity of 

information available to point out complex correlations, 

achieve better accuracy and improve the reliability of the 

obtained estimates [22,25]. Finally, results are validated with 

conditions representative of motorways and primary roads in 

the UK.  

 Linear regression 

Initially, linear regression is used to model the fuel 

consumption of trucks based on the available data from 

Microlise and TRL. This technique was used in the past to 

model road vehicle fuel consumption [41,44,45], which 

provides a way to have a baseline for comparison of 

performance between previous studies and the machine 

learning techniques applied later in the project. 

 Machine learning 

Machine learning techniques are, at the current state of 

knowledge, the best techniques to deal with ‘Big Data’ [46]. 

These techniques apply advanced statistics to detect patterns 

and recognize trends through the data. However, there are a 

number of machine learning techniques available and knowing 
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which one performs best for a specific problem is not possible 

a-priori [46]. For this reason, three different techniques are 

applied [22,25,26]: artificial neural networks [46-48], support 

vector regression [46,49] and random forests [50]. These 

techniques are tested in various case studies throughout the 

project, and compared in terms of R2, root-mean-squared error 

(RMSE), mean absolute error (MAE), and required training 

time. Machine learning algorithms (such as those used in 

regression analysis) require ‘training’ before being able to 

make an estimate. Working on an initial dataset representative 

of the phenomenon of interest, the algorithms automatically 

identify trends and patterns across the data [51]. This approach 

may require lots of data and some time, but it is necessary to 

ensure that the model is robust enough to deal with new 

information [46,51]. Based on that, the algorithms are then able 

to make accurate estimates about new conditions in almost real-

time [46,51]. 

The main advantage of these techniques is that they 

automatically apply probabilistic methods to detect trends and, 

for this reason, they are robust to outliers [46]. Additionally, 

equations which characterize patterns and trends across the data 

are directly generated by the algorithm so that users do not need 

to specify them. However, this might also be seen as a 

disadvantage of machine learning algorithms as it is generally 

said that they work like ‘black-boxes’; That is because the 

algorithms operate complex transformations of the input 

variables to higher dimensional spaces which makes the 

process difficult to replicate [46]. However, in order to reduce 

doubts about the reliability of the techniques applied and 

models developed in the study, interpretability is investigated, 

and performance also evaluated in these terms. For example, 

various variable selection algorithms are used to include in the 

developed models only variables which show some correlation 

with the fuel consumption of the considered fleet of trucks, and 

the results compared to those of past studies. In particular, p-

values, the adjusted-R2, the Akaike Information Criterion 

(AIC) [52], the Lasso [53] and random forests [50] have been 

analyzed and their results compared. Only variables identified 

by both the used algorithms and studies conducted in the past 

are used for modelling fuel consumption. Additionally, the 

architecture of the developed machine learning models is kept 

as simple as possible while achieving low error (RMSE and 

MAE) and reasonable training time. This improved the 

accuracy of the linear regression significantly. 

Finally, a parametric analysis of all input variables is 

performed. The models developed in the project are used to 

make estimates for 50 values evenly distributed between the 5th 

and 95th percentiles of the considered input variable, while 

other variables are set to their mean value. This procedure tests 

consistency of the developed machine learning models and 

assists interpretation. 

4 RESULTS 

In the first phase of the project, some multiple linear regression 

models are developed to understand the type of data available 

and explore opportunities within the available information. For 

example, in one of these initial studies some 1,420 records from 

260 trucks, driving at constant speed on the M18 motorway in 

the UK, are analysed [23]. Based on these data, the resulting 

linear regression model is derived: 

 
 62.42  0.00024  14.84 %

– 0.57 0.26 10  0.87

FC GVW g

s LPV SMTD

= + + +

+ +

  (1) 

 

where FC is Fuel Consumption (in l/100 km), GVW the Gross 

Vehicle Weight (in kg), g% the road gradient (in %), s the 

vehicle speed (in km/h), LPV10 unevenness as Longitudinal 

Profile Variance at 10 m wavelength (in mm2), and SMTD 

macrotexture as sensor measured texture depth (in mm). 

The model above is followed by other attempts using 

different datasets from trucks driving along the same road, 

which show the possibility of using high-resolution fuel 

consumption data to model truck fleet fuel consumption and the 

available information to make estimates about the impact of 

road roughness and macrotexture on the fuel consumption of 

the considered vehicle fleets. Perrotta et al [23] show that for 

trucks driving on motorways in the UK fuel consumption can 

be affected by road roughness (LPV10) by up to 3% and by the 

macrotexture of the road surface by up to 5%. That, together 

with other attempts performed on smaller [12,24] and larger 

[22,27] datasets, confirm the finding of studies conducted in the 

past and increase confidence that the ‘Big Data’ approach could 

work. 

In the second phase of the project, improving the accuracy of 

the developed models is the primary goal. A larger quantity of 

information is made available by Microlise and TRL, to test the 

usability of machine learning techniques and produce results 

representative of conditions typical of the whole strategic road 

network of England, which includes motorways and strategic 

primary roads. In a case study, 14,281 records from 1,110 

trucks are used and performance of a linear regression of the 

inputs is compared to results from machine learning techniques 

[22,27]. This analysis includes data from heavy trucks [54] 

driving at relatively constant speed along the motorways M1 

and M18 in England, representative of the condition of 

motorways in the UK. Figure 1 shows two of the developed 

models and compares linear regression with Artificial Neural 

Network (ANN) for the same data. For brevity, only results of 

the ANN are reported, but similar trends are found by support 

vector regression and random forests, demonstrating their 

ability to outperform linear regression models [26]. A 

parametric analysis of the input variables is performed to 

investigate how each relates to the variation of fuel 

consumption for the considered truck fleets. Figure 2 reports 

trends identified by parametric analysis of the developed linear 

model and ANNs [22,27]. Again, results of support vector 

regression and random forests are not reported for brevity, 

however, they show trends similar to those identified by the 

ANN and, for this reason, their interpretation can be considered 

robust and reliable. In particular, from Figure 2 it is possible to 

see that, in regards to road conditions and their impact on 

vehicle fuel consumption, the ANN identifies higher fuel 

consumption in road segments characterized by higher LPV at 

30 meters wavelength. That represents an interesting result 

which partially confirms results of studies conducted in the past 

[2,8,9,11], but it also opens discussion towards the impact of 

road surface conditions on vehicle fuel economy at motorway 

speed. 
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Figure 1. The fit of the ANN model developed by Perrotta et 

al [22,27] and comparison with a linear regression model 

developed using the same data. 

 

 
Figure 2. Examples of parametric analysis and comparison of 

estimates between the linear regression and the artificial 

neural network model developed in [22,27]. 

5 VALIDATION 

In the final phase of the project, the main goal is to test the 

developed methodology and models for conditions 

representative of the whole UK strategic road network, i.e., to 

validate the obtained results and extend their applicability to 

the national level. Therefore, data from a mix of truck types 

driving along different road types, such as motorways and 

primary roads in England, are considered. In particular, roads 

are selected to be representative of conditions of the entire 

strategic road network and included the whole M18, part of the 

M1, the whole A21 and part of the A47, A49, and A259. The 

sample ended up considering 29,536 records from light trucks, 

197,572 records for medium trucks and 256,678 records from 

heavy trucks (classified as specified by EPA [54]). Again, all 

considered records are from journeys of trucks performed at 

relatively constant speed along the considered road segments. 

Additionally, in this case, weather conditions are considered in 

the investigation. Figure 3 reports trends identified by 

parametric analysis of the developed linear model and artificial 

neural network.  
  

 

 
 
 

Figure 3. Examples of parametric analysis and comparison of 

estimates between the linear regression and ANN developed 

in the validation phase. 

Once again, trends identified by support vector regression and 

random forest are very similar to those identified by the ANN 

which makes conclusions based on machine learning models 

robust. In particular, it is possible to notice that the ANN shows 

that fuel consumption is higher for roads characterized by 

higher LPV at 10 meters wavelength and lower for higher 

temperature, which seems reasonable and in line with results of 

studies based on physical/mechanical approaches. 

6 CONCLUSIONS AND FUTURE DEVELOPMENTS 

This project has shown the great potential of the ‘Big Data’ 

approach and secondary use of truck sensors and road asset 

management data to model the variation of fuel consumption 

due to the impact of road surface condition. The results have  
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demonstrated that machine learning algorithms are able to 

outperform linear regression, in terms of RMSE, MAE, and R2. 

They have also showed that inclusion of more data and types of 

measurements could allow the models developed using 

machine learning to further improve in precision, accuracy, and 

reliability. 

Performing a parametric analysis has proven to be a good 

way to partially interpret results of machine learning algorithms 

as its output graphs are easily readable and allow identification 

of how fuel consumption varies in different situations. Further 

work should test and explore the impact of road surface 

conditions on truck fleet fuel consumption in urban 

environments using the developed method. The latter would 

provide an insight into how road roughness and macrotexture 

affect fuel consumption when low speed, and different traffic 

and road geometry from motorways and primary roads 

intervene in the process. This will improve the applicability of 

the approach and may help engineers in justifying a review of 

current road design and maintenance strategies helping 

highway authorities in saving costs and reducing the emissions 

of pollutants from the road transport industry. 

In the future, when data for different vehicle types, such as 

cars or motorbikes, became available, this approach could be 

extended to support engineers in estimating the excess costs 

and environmental impact that the conditions of the road 

surface produce. This work can also be relevant for electric 

vehicles since batteries could last longer on smoother road 

pavements and possibly increase the distance that a vehicle can 

travel with a single charge. 

ACKNOWLEDGMENTS 

This project has received funding from the 

European Union’s Horizon 2020 research 

and innovation programme under the Marie 

Skłodowska-Curie grant agreement No. 

642453. 

The authors would like to thank Microlise Ltd, for allowing 

analysis of anonymized sets of telematic data, and TRL 

together with Highways England, for enabling analysis of the 

asset management data in the HAPMS, for their collaboration 

and assistance provided during the whole project. 

REFERENCES 

[1] A. Hoen, A. van Grinsven, B. Kampman, J. Faber, H. van Essen and I. 
Skinner, Research for TRAN Committee - Decarbonisation of EU 

transport, Policy Department B: Structural and Cohesion Policies, 

Transport and Tourism, Directorate General  for Internal Policies, 
European Parliament, 2017. 

[2] Sandberg, U., Bergiers, A., Ejsmont, J.A., Goubert, L. and Karlsson, R., 

MIRIAM SP1 D.4: Road surface influence on tyre/road rolling 
resistance, Report from Project: Models for Rolling Resistance in Road 

Infrastructure Asset Management Systems (MIRIAM), 2011. 

[3] P.D. Cenek, Rolling resistance characteristics of New Zealand road 
surfaces in Vehicle-Road Interaction, ASTM STP 1, B.T. Kulakowski, 

Ed. Philadelphia: American Society for Testing and Materials, 248-262, 

1994. 
[4] G. Descornet, Road-surface influence on tire rolling resistance in Surface 

characteristics of roadways: International research and technologies, 

vol. ASTM STP 1, W. E. Meyer and J. Reichert, Eds. Philadelphia: 
American Society for Testing and Materials, 401-415, 1990. 

[5] E. Beuving, T. De Jonghe, D. Goos, T. Lindahl and A. Stawiarski, 

Environmental impacts and fuel efficiency of road pavements, European 
Asphalt Pavement Association (EAPA), Fuel efficiency report March, 

2004. 

[6] R. Laganier, R. and J. Lucas, Influence of pavement evenness and 

macrotexture on fuel consumption, in Surface characteristics of 

roadways: International research and technologies, ASTM STP 1, W.E. 
Meyer and J. Reichert, Eds. Philadelphia: American Society for Testing 

and Materials, 454-459, 1990. 

[7] H.W. du Plessis, A.T. Visser and P.C. Curtayne, Fuel consumption of 

vehicles as affected by road-surface characteristics, in Surface 

characteristics of roadways: International research and technologies, 

ASTM STP 1, W.E. Meyer and J. Reichert, Eds. Philadelphia: American 

Society for Testing and Materials, 480-496, 1990. 
[8] U. Sandberg, Road macro-and megatexture influence on fuel 

consumption, in Surface characteristics of roadways: International 
research and technologies, ASTM STP 1, W.E. Meyer and J. Reichert, 

Eds. Philadelphia: American Society for Testing and Materials, 460-479, 

1990. 
[9] K. Chatti and I. Zaabar, Estimating the effects of pavement condition on 

vehicle operating costs, NCHRP report 720, Transportation Research 

Board, 2012. 

[10] Zaabar, I. and Chatti, K. (2014), ‘Estimating vehicle operating costs due 

to pavement surface conditions’,Proceedings of Transportation Research 

Board 93rd Annual Meeting, Washingto n, US. 

[11] E. Benbow, S. Brittain and  H. Viner, MIRAVEC D3.1: Potential for NRAs 

to provide energy reducing road infrastructure, Report from project 

832615: Modeling Infrastructure Influence on Road Vehicle Energy 

Consumption (MIRAVEC). Deliverable D3.1, 2013. 

[12] Perrotta, F., Trupia, L., Parry, T. and Neves, L.C. (2017),  ‘Route level 

analysis of road pavement surface condition and truck fleet fuel 

consumption’, Proceedings of Pavement Life-Cycle Assessment 

Symposium, Illinois, US, 51-57. 
[13] D. Gleave, R. Frisoni, F. Dionori, L. Casullo, C. Vollath, L. Devenish, F. 

Spano, T. Sawicki, S. Carl, R. Lidia, J. Neri, R. Silaghi and A. 

Stanghellini, EU road surfaces: Economic and safety impact of the lack 
of regular road maintenance, Policy Department B: Structural and 

Cohesion Policies, Transport and Tourism, Directorate General  for 
Internal Policies, European Parliament, 2014. 

[14] Wang, T., Lee, I.S., Kendall, A., Harvey, J., Lee, E.B. and Kim, C. 

(2012), ‘Life cycle energy consumption and GHG emission from 

pavement rehabilitation with different rolling resistance’, Journal of 

Cleaner Production, 33, 86-96. 

[15] Wang, T., Harvey, J. and Kendall, A. (2014), ‘Reducing greenhouse gas 

emissions through strategic management of highway pavement 

roughness’, Environmental Research Letters, 9(3). 

[16] Santero, N.J. and Horvath, A. (2009), ‘Global warming potential of 

pavements’, Environmental Research Letters, 4(3), p. 034011. 

[17] Trupia, L., Parry, T., Neves, L.C. and Lo Presti, D. (2016), ‘Rolling 

resistance contribution to a road pavement life cycle carbon footprint 

analysis’, International Journal of Life Cycle Assessment, 22(6), 972-

985. 

[18] Zaabar, I.  and Chatti, K. (2010), ‘Calibration of HDM-4 models for 

estimating the effect of pavement roughness on fuel consumption for U. 

S. conditions’, Transportation Research Record: Journal of the 

Transportation Research Board, 2155, 105-116. 

[19] U. Hammarström, R. Karlsson and H. Sörensen (2008), Road surface 

effects on rolling resistance - coastdown measurements with uncertainty 

analysis in focus, Report from Project:  Energy Conservation in Road 

Pavement Design, Maintenance and Utilisation (ECRPD), Deliverable 

D5(a), 2008. 

[20] R. Karlsson, U. Hammarström, H. Sörensen and O. Eriksson, Road 
surface influence on rolling resistance coastdown measurements for a car 

and an HGV, VTI notat 24A-2011, Swedish Road and Transport Institute, 

Linköping, Sweden, 2011. 
[21] U. Hammarström, J. Eriksson and R. Karlsson, Rolling resistance model, 

fuel consumption model and the traffic energy saving potential from 
changed road surface conditions, Report VTI-code 748A, Swedish Road 

and Transport Institute, Linköping, Sweden, 2012. 

[22] Perrotta, F., Parry, T. and Neves, L.C. (2017), ‘Application of machine 

learning for fuel consumption modelling of trucks', Proceedings of the 
2017 IEEE International Conference on Big Data, Boston, US. 

[23] Perrotta, F., Parry, T. and Neves, L.C. (2017), ‘Using truck sensors for 

road pavement performance investigation', Safety and Reliability - Theory 
and Applications, Proceedings of 27th annual European Safety and 

Reliability Conference (ESREL 2017), Portoroz, Slovenia, 392-396. 

[24] Perrotta, F., Parry, T. and Neves, L.C. (2017), ‘A big data approach to 

assess the influence of road pavement condition on truck fleet fuel 



                                                                                                                                                                 D5.2 - Final Report 

48 

 

consumption', Transport, Infrastructure and Systems: Proceedings of the 

AIIT International Congress on Transport, Infrastructure and Systems, 

G. Dell’Acqua and F. Wegman, Eds. Rome, Italy, CRC Press, 33-38. 

[25] Perrotta, F., Parry, T., Neves, L.C. and Mesgarpour, M. (2018), ‘A 

machine learning approach for the estimation of fuel consumption related 

to road pavement rolling resistance for large fleets of trucks’, 
Proceedings of the 6th International Symposium on Life-Cycle Civil 
Engineering (IALCCE 2018), Ghent, Belgium. 

[26] Perrotta, F., Parry, T.,  Neves, L.C., Mesgarpour, M. Benbow, E. and 

Viner, H. (2018), ‘A big data approach for investigating the performance 

of road infrastructure’, Proceedings of Civil Engineering Research in 

Ireland (CERI 2018), Dublin, Ireland. 

[27] Perrotta, F., Parry, T. and Neves, L.C. (2018), ‘Evaluation of road 

pavements fuel efficiency using truck sensors data’, TRAVISIONS Young 

Researchers Competition 2018, Transportation Research Arena (TRA).  

[28] SAE International, SAE J1939-71, Vehicle Application Layer - Surface 

Vehicle Recommended Practice, SAE International Standard, 2016. 
[29] IBM, The four V’s of Big Data, IBM Big Data & Analytics Hub, 2018, 

accessed 21 August 2018, <http://www.ibmbigdatahub.com/info-

graphic/four-vs-big-data>.  
[30] The Highways Agency, HD 29/08 Data for pavement assessment, in 

Design manual for roads and bridges, 7(3), Part 2, Standard, 2008. 

[31] E. Benbow, D. Wright, K. Nesnas and A. Wright, Measures for assessing 
ride quality on trunk roads, Report CPR1553, Crowthorne, UK, 2011. 

[32] H. Viner, P. Abbott, A. Dunford, N. Dhillon, L. Parsley and C. Read, 

Surface Texture Measurement on Local Roads, TRL report PPR148, 
Crowthorne, UK, 2006. 

[33] G. Carlsson, VEjstandard og Transport-Omkostninger (VETO), Report 

VTI 307, Swedish Road and Transport Institute, Linköping, Sweden, 
1986. 

[34] U. Hammarström and B. Karlsson, VETO - A computer program for 

calculation of transport costs as a function of road standard, Report 
VTI/MEDDELANDE 501, Swedish Road and Transport Institute,  

Linköping, Sweden, 1987. 

[35]  H.R. Kerali, J.B. Odoki and E.E. Stannard, Overview of HDM-4, Volume 
1, Paris: World Roads Association (PIARC), 2006. 

[36] Odoki, J. B., Anyala, M. and Bunting, E. (2013), ‘HDM-4 adaptation for 

strategic analysis of UK local roads’, Proceedings of the Institution of 

Civil Engineers - Transport, 166, 65–78. 

[37] University of Birmingham, Development of socio-economic models for 

highway maintenance, Analysis of DfT Road Network Using HDM-4, 
Final report for WSP 4/068/005, March, 2011. 

[38]  Perrotta, F., Parry, T., Neves, L.C., Buckland T., and Mesgarpour, M. 

(2018), ‘Comparison of HDM-4 fuel consumption estimates with real 

measurements from trucks on motorways: a UK case study', Proceedings 

of the Transportation Research Board 97th Annual Meeting, Washington, 

D.C., US. 
[39] Perrotta, F., Parry, T., Neves, L.C., Buckland, T., Benbow, E. and 

Mesgarpour, M. (2019), ‘Verification of the HDM-4 fuel consumption 

model using a Big Data approach: a UK case study', Transportation 
Research Part D: Transport and Environment, 67, 109-118. 

[40] Perrotta, F., Parry, T., Neves, L.C., Buckland, T., Benbow, E. and Viner, 

H. (2018), ‘Comparison of truck fuel consumption measurements with 

results of existing models and implications for road pavement LCA’, 
Proceedings of the 6th International Symposium on Life-Cycle Civil 

Engineering (IALCCE 2018), Ghent, Belgium. 

[41] Bifulco, G., Galante, F., Pariota, L. and Spena, M. (2015), ‘A linear 

model for the estimation of fuel consumption and the impact evaluation 

of advanced driving assistance systems’, Sustainability, 7(10), 14326-

14343. 
[42] Rakha, H. A., Ahn, K., Moran, K., Saerens, B. and Van den Bulck, E. 

(2011), ‘Virginia Tech comprehensive power-based fuel consumption 

model: Model development and testing’, Transportation Research Part 

D Transport and Environment, 16(7), 492-503. 

[43] Wang J. and Rakha, H.A. (2016), ‘Fuel consumption model for 

conventional diesel buses', Applied Energy, 170, 394-402. 

[44] N. Clark, G. Thompson and O. Delgado, Modeling heavy‐duty vehicle 

fuel economy based on cycle properties, WVU Final report ICCT, West 
Virginia University Center for Alternative Fuels, Engines, and Emissions, 

2009. 

[45] Delgado, O.F., Clark, N.N. and Thompson, G.J. (2011), ‘Modeling 

Transit Bus Fuel Consumption on the Basis of Cycle Properties’, Journal 

of the Air & Waste Management Association, 61(4), 443-452. 

[46] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge, 

MA: The MIT Press, Massachussets Institute of Technology, 2016. 

[47] Riedmiller, M. and Braun, H. (1993), ‘A direct adaptive method for faster 

backpropagation learning: The RPROP algorithm', Proceedings of IEEE 

International Conference on Neural Networks (ICNN), 1(7), 586-591. 

[48] McCulloch, W. S. and Pitts, W. (1943), ‘A logical calculus of the ideas 

immanent in nervous activity’, The Bulleting of Mathematical 

Biophysics, 5(4), 115-133. 
[49] S.R. Gunn, Support vector machines for classification and regression, 

Technical Report, School of Electronics and Computer Science, 

University of Southampton, UK, 1998. 

[50] Breiman, L. (2001), ‘Random forests’, Machine Learning, 45(1), 5-32. 

[51] G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to 

Statistical Learning. New York, NY: Springer Science+Business Media 
New York, 2013. 

[52] Akaike, H. (1974), ‘A new look at the statistical model identification’, 
IEEE Transactions on Automatic Control, 19(6), 716-723. 

[53]  Tibshirani, R. (1996), ‘Regression shrinkage and selection via the Lasso’, 
Journal of the Royal Statistical Society B, 58(1), 267-288. 

[54] EPA, Vehicle Weight Classifications for the Emission Standards 

Reference Guide, U.S. Environmental Protection Agency, 2017, accessed 
13 December 2017, <https://www.epa.gov/emission-standards-

reference-guide/vehicle-weight-classifications-emission-standards-
reference-guide>. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                 D5.2 - Final Report 

49 

 

ABSTRACT: This chapter reports on the research contributions of the project ‘Reduction of uncertainty through regularized, 

automated road inspection’. This research applies Unmanned Aerial Vehicles (UAVs) and the photogrammetry method to road 

and bridge inspections. Associated data processing, quality evaluation, and damage extraction solutions are also created. The 

results show that low cost commercial UAVs have the capabilities to acquire high-quality images and to be used for 3D 

documentation and surface damage detection. In this project, the Structure From Motion (SFM) method is employed for images 

based 3D point cloud generation. Subsequently, automatic noise reduction and damage segmentation method are developed for 

the point cloud post-processing. Following a lab test, the entire pipeline is applied in several field surveys, such as the Wicklow 

road, Wicklow Bridge, and Boyne viaduct in Ireland, thus establishing that the proposed UAV inspection method can reduce 

surveying costs significantly and provide a competitive result in terms of quality. 

KEY WORDS: Unmanned Aerial Vehicle (UAV); Photogrammetry; Structure From Motion (SFM); Inspection; Infrastructure.

1 INTRODUCTION 

The safety of a community’s road network is fundamental to an 

efficient public transportation system and highly related to its 

economic prosperity. Therefore, such networks must be 

inspected and maintained on a regular basis. The primary 

approach has been in-person inspection, which has 

considerable limitations such as the generation of traffic 

interruptions, reliance on expensive and/or heavy equipment, 

and creation of safety risks for inspectors.  

As a possible alternative, the use of UAVs with remote 

sensing capabilities has received significant interest in baseline 

documentation and surface evaluation for roads [1] and bridges 

[2]. The viability of using UAVs for infrastructure inspection 

relies upon a pipeline of four components: (1) high quality and 

comprehensive data acquisition, (2) 3D data reconstruction and 

evaluation, (3) quality optimization, and (4) damage extraction. 

These four areas are the focus of this TRUSS project. This 

chapter summarizes the background to the work and the 

contributions made as part of the research program. 

2 BACKGROUND 

 UAV-based data acquisition 

The UAV-based data acquisition for infrastructure inspection 

can be achieved from a multitude of sensors. For visual 

inspection, the most common approaches involve Light 

Detection and Ranging (LiDAR) or imagery data (photographs 

or video) from a camera. LiDAR is a line of sight technology 

that sends out a laser beam and back calculates the position of 

the beam intersection with an object in the real world. The 

resulting set of points with its co-registered intensity and x,y,z 

positional data are used to generate a three-dimensional (3D) 

point cloud directly. However, full capability LiDAR 

equipment is comparatively expensive and heavy for UAV 

usage. As such, cameras are more commonly deployed, 

especially for smaller and less costly UAVs. However, imagery 

natively only provides 2D information. To extract 3D 

information, a reconstruction process is required, as will be 

introduced in the next section. 

For road inspection, selecting an appropriate UAV platform 

for sensor mounting and data collection involves: (1) having 

enough payload to carry the sensors, (2) having adequate 

battery life for sufficient flight time for data collection, (3) 

having adequate flexibility to avoid obstacles, and (4) 

providing enough stability to ensure high data quality. This last 

factor is crucial, as UAV vibration can significantly 

compromise data quality [3]. Image blurring and the ‘Jello’ 

effect on videos may both generate heavy noise in a 3D point 

cloud. Mitigating this problem requires both hardware design 

and/or algorithm development, such as better stabilizing the 

UAV frame, redesigning the camera mounting, improving the 

flight control program, and post-processing of the datasets. 

Furthermore,  Caroti et al [4] demonstrate that, in addition to 

instrument and processing methodologies, the data capturing 

strategies also affect the output. This issue relates to the flight 

path planning, such as flight height, incidence angle, and offset 

distance, as well as the data density control. However, the 

impact of the image capturing strategies on the final dataset has 

yet to be systematically evaluated concerning both flight path 

coverage and data acquisition density. 

 3D reconstruction and evaluation 

As the acquired images or videos cannot directly provide 3D 

scene information, a further step is required in the form of 3D 

scene reconstruction. To achieve this, a common strategy is the 

SFM method [5]. This method relies on images taken from 

multiple viewpoints. By detecting key points in each image, the 

geometric relationship between images can be calculated and 

used for triangulation. Thus, the depth information of key 

points is derived and placed into a unique coordinate system. 
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Using this approach Hallermann et al conducted a series of 

experiments [6-8] in which they used an AscTec platform with 

a Sony NEX camera for image acquisition. The SFM enabled 

generation of 3D point clouds. The 3D data were then used to 

detect locations of surface damage and inclination of a historic 

German tower, the Bad Frankenhausen. Wu [9] noted that the 

direct application of SFM is problematic for long strip 

structures, such as a road, because of radial distortion. To 

overcome this, Wu’s research presented a self-calibration 

method to fix the curvature problem in a few critical 

configurations, but failed to study the underlying phenomenon 

of radial distortion comprehensively. Therefore, a reliable 

method for UAV-derived point cloud quality evaluation is 

necessary. 

Compared to the point cloud generated by the traditional 

laser scanner, the UAV imagery reconstructed point clouds 

include data from more viewpoints and are less restricted by the 

view angle, therefore providing better coverage. However, 

point cloud-based images are often much noisier than those 

obtained from active sensors (e.g., laser scanners). Possible 

reasons can be mismatching of feature points, low-quality 

images, distortions of a camera lens or environmental effects 

like light reflection and shadows. Those noise points can impair 

surface reconstruction, point classification, and damage 

detection. To minimize the effect, an optimization processing 

should be included to remove noise within the point cloud. 

 Quality optimization 

To date, quality optimization research has mainly focused on 

noise reduction. Generally, noise can be classified as small-

amplitude noise or distant outliers [10]. The small-amplitude 

noise has points randomly distributed around the surface. To 

reduce such noise points, the main idea is to move the points to 

an estimated surface. I.e., a Moving Least Squares (MLS) 

algorithm can be used to generate a smoothed surface [11]. 

Shen et al [12] defined the implicit moving least-squares 

(IMLS) approach for building interpolating or approximating 

implicit surfaces from polygonal data, while Yingjie and Liling 

[13] included the weighting least squares method and 

hierarchical clustering algorithm to optimize the speed of the 

MLS method. However, these methods are usually sensitive 

against a large number of outliers and over smooth the data 

points. 

Distant outliers are points clustered together far from the 

actual surface. This commonly occurs due to structural artefacts 

in the acquisition process or caused by mismatching features in 

image based-reconstruction process [14]. Outliers must be 

removed from the dataset before any surface fitting. Two 

typical methods to remove outliers are statistical and geometric. 

Statistical methods assume noise to have different performance 

characteristics than regular points in a k-dimensional space 

when fitting the data to a standard probability distribution [15]. 

Geometric methods use distance to a neighbour point or a local 

density to set a threshold for noise removal [16].  

As mentioned above, several methods are available for point 

cloud noise removal. However, the performance of each 

technique on a high noisy SFM dataset is unclear [17]. 

Therefore, it is necessary to find an efficient method for 

removing noise from UAV image derived point clouds. 

 Damage identification and extraction 

In an inspection context, damage identification activities 

typically aim to find cracks, discolourations, spalling, and other 

forms of damage (Figure 1), as well as the underlying baseline 

geometry of the scanned structure. Initially, such feature 

extraction was done manually by trained operators, as in the 

mentioned work by Hallermann [6-8]. Subsequent efforts have 

attempted to automate the process, such as the semi-automatic 

approach developed by Sui [18] for post-disaster, building 

damage detection. In that work, building heights, textures, and 

shapes were compared between pre-disaster and post-disaster 

models, and changes became the basis for damage 

determination. Similarly, by comparing multiple scans over 

time, Lucieer [19] used SFM to map landslide displacements. 

At a flight elevation of 40 m with 39 ground control points, they 

achieved a 7.4 cm horizontal accuracy and a 6.2 cm vertical 

accuracy for land movement tracking. Notably, in both of these 

examples, there was an assumption of the existence of and 

reliance upon historical data. However, more often than not, 

such information is not available. 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. Typical road damages [20]: (a) Cracks, (b) pot 

holes, (c) rut, (d) shoving. 

Thus, the question arises as to how to extract features based 

exclusively on current data. With LiDAR data, the lines of 

research are both extensive and fairly well-established such as 

the artificial neural network-based approach for damage 

extraction [20], the topology graphing for building extraction 

[21], and the supervised machine learning approach for road 

extraction [22]. An equivalent set of efforts have yet to be 

developed for SFM point clouds. A possible reason is that 

SFM-generated point clouds are generally less homogeneous 

and have more noise than those produced directly from LiDAR, 

as the UAV flight paths are less consistent than data acquired 

from the greater heights of the more controlled helicopters and 

plane flightpaths. Thus, identification and extraction of 

relatively small features (as would be representative of damage 

on the surface of infrastructure) become especially challenging 

with UAV-based images. For this reason, developing a feature 

extraction algorithm applicable to SFM outputs of imagery-

based point clouds that is robust against low-quality and 

inconsistently dense point clouds would be a significant 

advancement in UAV usage. 
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3 METHODOLOGY AND RESULT 

Thus, for UAVs to be viable for automatic road network 

inspection, problems related to the input data quality and 

coverage and its post-processing must be solved. These 

problems are addressed through the following four objectives:  

• Design a reliable UAV platform and proper strategies for 

data acquisition. 

• Find a robust solution for images-based 3D reconstruction. 

• Data quality evaluation and optimization. 

• Algorithm development for automatic damage extraction and 

its evaluation. 

 
Figure 2. Research structure of the three areas of data 

acquisition, 3D reconstruction, and damage extraction.  

 UAV-based data acquisition 

To achieve high-quality data, a reliable and extendable UAV 

platform must be employed. A 2015 review of the state of the 

technology [23], identifies that low-cost UAVs (those under 

4000 euros) could not simultaneously satisfy all requirements 

of flight times, payload, hovering capabilities, and flight speed 

needed for road network inspection. Additionally, at that time, 

a further disadvantage of commercial UAVs laid in that they 

were closed source. This means that fight path control data 

(such as the cruising speed, turning radius and camera angle) 

were not easily accessible or alterable.  

In response, a multi-rotor UAV with a real-time video system 

for road and bridge inspection is designed and built as part of 

this project (Figure 3). This involves the design and 3D printing 

of the frame, the assembly of various commercially available 

components, and the programming of the flight controller.  

 
Figure 3. Customized multi-rotor UAV system. 

 

The system is tested during 10 aerial surveys through which 

more than 2,000 still images and 100 minutes of video are 

collected (examples shown in Figure 4). Additionally, the 

UAV design is based on open source projects and can be 

updated to meet future requirements (e.g., adding additional 

sensors, enhancing on-board computing power, and 

customising the data capturing strategies). 

 
Figure 4. UAV-based surveys. 

 

To ensure the stabilization and increasing the image quality by 

avoiding blurring, the flight control system needs to be 

adjusted. The main goal of tuning the control system is to 

minimise the difference between the real location and the 

intended location, as shown by Equation (1), where 𝑒(𝑡) is the 

error between the desired and measured locations. 

 

𝑒(𝑡) = 𝑥𝑑𝑒𝑠(𝑡) − 𝑥𝑟𝑒𝑎𝑙(𝑡) (1) 

 

To make the adjustments more rapid and smoother, dynamic 

control mechanisms are required [24]. Proportional Integral 

Derivative (PID) control methods are applied as per Equation 

(2), in an attempt to minimize errors over time by adjusting the 

control variable 𝑢(𝑡), which is the thrust..  

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑

𝑡

0

𝑑𝑒(𝑡)

𝑑𝑡
 (2) 
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8

 (3) 

 

where the terms⁡𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 denote the coefficients for the 

proportional, integral, and derivative terms respectively. The 

𝐾𝑝𝑒(𝑡) term accounts for present values of the error, while the 

term 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
 accounts for errors accumulated in the past, 

and the term 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 accounts for trends of error changing rate 

in the future. 

By tuning the three model parameters (𝐾𝑝, 𝐾𝑖, and 𝐾𝑑), the 

controller can have a rapid and accurate reaction to pose 

adjusting. To identify the best parameters, the UAV is set to be 

rotatable in only one degree of freedom (shown in Figure 5) to 

measure the tuning feedbacks. 

 

 

 

 

Figure 5. PID tuning test.  

 3D reconstruction and quality evaluation 

Creating a robust 3D reconstruction approach for 

imagery/video based data streams requires the creation of a 

pipeline for point cloud generation, as well as for the collection 

of significant data to test the approach. The SFM method is 

chosen as it can be applied to a single camera. By detecting 

common features from a group of images taken from different 

angles, this method can calculate the geometric relationship 

between each frame. After the relative location of each frame 

is calculated, more common feature points can be projected to 

the 3D coordinate system. To increase the accuracy, image 

selection, camera calibration, and control image orientation are 

useful [26].  

However, before this method can be used in real inspection 

scenarios, possible quality issues must be identified and 

addressed systematically. These relate to the collection angles, 

the offset distances, the light conditions, and the camera model. 

Among those factors, the angles and distances are most 

intrinsic to the survey process. To date, however, their impact 

on the results and means to optimize their accuracy have yet to 

be addressed systematically. The investigation into this topic 

starts by conducting a laboratory experiment [27]. The 

experiment involves the construction of the masonry wall (130 

x 90 cm) in Figure 6. To replicate field conditions, a lightweight 

digital camera or action camera commonly used in UAVs is 

selected for image capture, more specifically, the Cannon 

IXUS 175 camera. The camera is tripod mounted to control the 

shooting angles. Image capturing occurs at offsets from 1, 2, 

and 3 meters from the wall’s front surface. Angles are set as 30, 

45, and 60 degrees to the wall’s normal direction. SFM is used 

to generate a point cloud from these images (Figure 7). 

 

  

Figure 6. Camera set up. Figure 7. SFM-based point 

cloud. 

As a reference dataset, laser scanning is carried out with the 

Leica ScanStation P20 shown in Figure 8. Figure 9 illustrates 

the resulting point cloud directly taken from the data.  

 

  

Figure 8. Laser scanner 

set up. 

Figure 9. Laser scanning-based 

point cloud. 

By aligning the image-based data and laser scanning-based data 

in the same coordinate system, the absolute distance between 

the two datasets can be calculated leading to the results in 

Figure 10. The distance distribution shown on the right side 

indicates that the error is from 0.02 mm to 2 mm. The average 

error is about 1 mm demonstrating that in this type of situation, 

with a relatively short distance and multiple shooting angles, an 

image-based point cloud is considered quite reliable. 

 

 

Figure 10. Image-based point cloud compared to a laser-

scanning-based point cloud. 

In real inspection scenarios, access may be restricted, and the 

cost-effectiveness of multiple scan stations may not be feasible. 

To understand the effect of shooting angles, and distances with 

respect to the quality of the result, the datasets are processed 

first individually and then in groups (Figure 11).  
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 Figure 11. Point clouds from the various camera positions. 

 

Figures 11(a), 11(b), 11(d) and 11(e) demonstrate that images 

obtained from closer locations and with larger shooting angles 

are less reliable. This defies common perceptions that closer 

data capture would be superior. For example, Figure 11(f) taken 

from 2 m away is clearly superior to an image taken from only 

1 m (Figure 11(c)). A possible reason is that the longer shooting 

distance increases the field of view of the images, allowing the 

overlapping and matching between images to increase, which 

is significant for the SFM process. Furthermore, by processing 

two sets of images together (Figures 11(c) and 11(f)), the 

deformation problem can be overcome. The results provide 

meaningful insight into real inspection strategies. With a fixed 

lens, compared to a close but big shooting angles flight 

trajectory, a relatively longer distance but small shooting angle 

flight path is more appropriate for image-based 3D 

reconstruction. 

 Noise reduction 

During a field test conducted on a concrete bridge in county 

Wicklow of Ireland, the point clouds reconstructed from bundle 

images from UAV contain a large amount of noise in the data. 

The majority are outlier noise clusters around the bridge, 

especially under the bridge, which are caused by the waves, 

water reflection, and self-shadows. As previously mentioned, 

denoising is important as noise can negatively impact further 

production-oriented processing for documentation and damage 

detection. Statistical and geometric-based filters are used in this 

investigation for denoising, and implemented in Cloud 

compare [28] and the Point Cloud Library (PCL) [29]. 

The Statistical Outlier Removal (SOR) filter firstly computes 

the average distance of each point to its neighbours through k-

nearest neighbours searching function [30,31]. The point is 

considered an outlier if this distance is larger than the average 

distance derived from all points in the dataset plus t times of 

the standard deviation () of the average distance. Thus, the 

outlier removal is controlled by two thresholds: k and t. 

The geometric-based filter considers the distance from a 

given point to the object’s surface [32]. The algorithm locally 

fits a plane through each point in the dataset, which is based on 

neighbour points of the given point extracted by either kNN 

search or a range search method. Next, if the distance of a point 

to the fitting plane is larger than the threshold known as the max 

error rate (r), the point will be labelled as a noise point.  

The test result shows that the SOR filter can efficiently 

remove most of the outlier noise in this situation. By searching 

400 neighbors at each point, the False Positive Rate (FPR) 

achieves 2.54%, which means that 97.46% of the noise is 

detected and removed, as shown in Figure 13, when compared 

to the laser scanned ground truth. 

 
Figure 13. The classified noise pints (red points are outlier). 

 Automated damage detection 

Identifying damage using a 3D model is the final goal. To this 

end, quite a few methods are tested in different scenarios. For 

cracks in the concrete surface, a simple plane fitting method is 

applied to analyse the surface changes and locate cracks. In the 

case study, through the SFM point cloud, the crack is measured 

as 1.4 cm, which is close to the 1.2 cm obtained from the in-

situ measurement. In addition, the 3D model shows that the 

right-side wall is about 1 cm in front of the left side, which 

cannot be observed from the 2D images and may provide 

insight as to the likely failure mechanism (Figure 14). 

 

   
(a)  (b)  

 

 
(c)  

Figure 14. Damage detection on concrete surfaces: (a) 

Original image, (b) reconstructed point cloud, (c) digital 

elevation model (DEM) for damage identification. 

A lab experiment is conducted to test damage also on masonry 

surfaces. In Figure 15, a brick wall with 1 cm wide cracks is 

used for 3D model reconstruction based on multiple images, as 

well as a laser scanner. The cracks could be automatically 

extracted from the background, which involve using normal 

vectors, texture information, statistical analysis and machine 

learning for detection and classification.  
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(a)  (b)  (c)  

Figure 15. Damage detection on masonry surfaces: (a) 

Original image, (b) damage detection on image-based point 

cloud, (c) damages detection on laser scanner-based point 

cloud. 

 

To evaluate the bridge pavement condition, Figure 16 

illustrates the processing steps that are developed to trace the 

surface changes and locate the damages [33]. First, the UAV-

based SFM method is applied to generate the point cloud 

(Figure 16(a)). Then, the pavement is extracted from the point 

cloud by K-mean segmentation (Figure 16(b)). After that, the 

polynomial surface fitting method and region growing methods 

are applied to visualize the surface damages and locate cracks. 

 

Figure 16. Bridge pavement evaluation. 

4 CONCLUSIONS AND FUTURE WORK 

This work has explored the potential of utilizing low-cost UAV 

images for 3D infrastructure inspection. The whole workflow 

has included UAV design, flight path planning, image data 

acquisition, and 3D reconstruction, with strong focus on 

evaluation of data post-processing. For the research purposes 

of this project, there has been two main challenges: resolving 

the outlier noise and achieving a robust damage detection 

scheme. In order to find an effective solution to resolve the 

outlier noise problem, caused by the water reflection and 

shadows, two commonly used noise filter and various 

parameter settings have been tested. To achieve a robust 

damage detection scheme, a two-step data extraction method 

has been developed for pavement extraction and damage 

extraction. Furthermore, a series of data quality evaluation 

metrics have been introduced, as well as the impact of various 

parameters, for example, the flight attitude, light condition, and 

image overlapping rate.  

Currently, using a UAV-based digital camera, different 

surface faults can be successfully detected and measured. 

Future research aims to use multiple sensors as detectors, such 

as a thermal camera and multispectral camera, to identify the 

damages beneath the objects’ outer surface. 
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