

HORIZON 2020

UPC

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH





Evaluation of the Hilbert Huang Transformation of Transient Signals for Bridge Condition Assessment

John Moughty & Prof. Joan Ramon Casas

Technical University of Catalonia (BarcelonaTech)

#### 21<sup>st</sup> June 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642453





# Outline

HORIZON 2020

Research motivation and overview

Test data (Steel Truss Bridge)

**Empirical Mode Decomposition** 

Application of Hilbert-Haung Transform (HHT)

Conclusions





#### **Research Motivation**

- Fourier Transforms (FTs) are commonly employed to assess the structural condition of bridge structures, however, FTs require the system response to be linear and strictly stationary.
- Operational bridge vibrations are not generally linear or stationary.
- Non-stationarity of response signals may increase with damage.





#### **Research Motivation**

- Fourier Transforms (FTs) are commonly employed to assess the structural condition of bridge structures, however, FTs require the system response to be linear and strictly stationary.
- Operational bridge vibrations are not generally linear or stationary.
- Non-stationarity of response signals may increase with damage.

|                 | Fourier               | Wavelet                  | Hilbert-Haung Transform  |
|-----------------|-----------------------|--------------------------|--------------------------|
| Frequency Calc. | Global<br>Convolution | Global<br>Convolution    | Local Differentiation    |
| Presentation    | Energy &<br>Frequency | Energy, Time & Frequency | Energy, Time & Frequency |
| Non-Linear      | No                    | No                       | Yes                      |
| Non-Stationary  | No                    | Yes                      | Yes                      |

| Table 1 | . Signal | <b>Transformations</b> |
|---------|----------|------------------------|
|---------|----------|------------------------|





#### Hilbert Huang Transform: Process Overview







#### Hilbert Huang Transform: Process Overview







#### Steel Truss Bridge: Progressive Damage Test





- Steel truss bridge subjected to 4 damage scenarios to central vertical members
- A 21kN double-axle vehicle with a velocity of 40km/hr was used for structural excitation
- Vertical acceleration response of vehicle passage was recorded from 8 locations







#### **Recorded Structural Response**







#### **Recorded Structural Response**













1. Identify all extrema in the signal x(t)





1. Identify all extrema in the signal x(t)

HORIZON 2020

2. Interpolate with cubic spline function between minima points & maxima points to form an envelope  $e_{min}(t) \& e_{max}(t)$ 





1. Identify all extrema in the signal x(t)

HORIZON 2020

2

- 2. Interpolate with cubic spline function between minima points & maxima points to form an envelope  $e_{min}(t) \& e_{max}(t)$
- 3. Compute the mean of envelope  $m(t) = \frac{\{e_{min}(t) + e_{max}(t)\}}{\{e_{min}(t) + e_{max}(t)\}}$





1. Identify all extrema in the signal x(t)

- 2. Interpolate with cubic spline function between minima points & maxima points to form an envelope  $e_{min}(t) \& e_{max}(t)$
- 3. Compute the mean of envelope  $m(t) = \frac{\{e_{min}(t) + e_{max}(t)\}}{2}$
- 4. Extract the detail d(t) = x(t) m(t)





1. Identify all extrema in the signal x(t)

- 2. Interpolate with cubic spline function between minima points & maxima points to form an envelope  $e_{min}(t) \& e_{max}(t)$
- 3. Compute the mean of envelope  $m(t) = \frac{\{e_{min}(t) + e_{max}(t)\}}{2}$
- 4. Extract the detail d(t) = x(t) m(t)
- 5. Check if d(t)'s extrema & zero crossings differ by a maximum of 1, and if d(t)satisfies the stopping criterion based on consecutive standard deviation values.













## **EMD:** Advancements

Ensemble Empirical Mode Decomposition (EEMD)

- Gaussian white noise with the same variance as the noise within the original signal is added for multiple realisations
- Added noise alters the signal slightly while retaining its physical meaningful information
- Mode mixing is reduced considerably





#### **Ensemble Empirical Mode Decomposition**







## Hilbert Transform

Hilbert transform  $H[c_i(t)]$  can

be applied to the IMFs  $c_i(t)$  to

obtain an analytic signal z(t)

that contains instantaneous

amplitude  $a_i(t)$  and phase  $\theta_i(t)$ 

, which can be differentiated to

obtain instantaneous frequency.

$$H[c_i(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{c_i(\tau)}{t - \tau} d\tau$$

$$z(t) = c_i(t) + jH[c_i(t)] = a_i(t)e^{j\theta_i(t)}$$

$$a_i(t) = \sqrt{c_i^2(t) + H^2[c_i(t)]}$$

$$\theta_i(t) = \arctan\left(\frac{H[c_i(t)]}{c_i(t)}\right)$$

$$\omega_i(t) = \frac{d\theta_i(t)}{dt}$$





## HHT Results: Marginal Hilbert Spectrum



**All Sensors Damaged** 



#### HHT Results: Instantaneous Vibration Intensity







## **HHT Spectrum Results**







# Conclusions

- EEMD is an adaptive method decomposing a nonlinear non-stationary signal with physical meaningful results (no mode-mixing).
- Instantaneous Vibration Intensity may attain considerable damage sensitivity
- HHT Spectrums demonstrated the ability to locate structural changes in a symmetrical structure
- Additional work is required for multivariate EMD to enhance HHT Spectrum results





## THANK YOU FOR YOUR ATTENTION





This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642453

