Horizon 2020 Marie Skłodowska-Curie Innovative Training Network

Publications in International Peer-reviewed Journals

Home/Publications in International Peer-reviewed Journals
Publications in International Peer-reviewed Journals 2019-05-29T08:53:15+00:00

About the overall TRUSS ITN project

The growth of cities, the impacts of climate change and the massive cost of providing new infrastructure provide the impetus for TRUSS (Training in Reducing Uncertainty in Structural Safety), a €3.7 million Marie Skłodowska-Curie Action Innovative Training Network project funded by EU’s Horizon 2020 programme, which aims to maximize the potential of infrastructure that already exists (http://trussitn.eu). For that purpose, TRUSS brings together an international, inter-sectoral and multidisciplinary collaboration between five academic and eleven industry institutions from five European countries. The project covers rail and road infrastructure, buildings and energy and marine infrastructure. This paper reports progress in fields such as advanced sensor-based structural health monitoring solutions – unmanned aerial vehicles, optical backscatter reflectometry, monitoring sensors mounted on vehicles, … – and innovative algorithms for structural designs and short- and long-term assessments of buildings, bridges, pavements, ships, ship unloaders, nuclear components and wind turbine towers that will support infrastructure operators and owners in managing their assets. [DOI] -> Link to full text in repository

About WP4. Buildings, Energy and Marine Infrastructure

Spent fuel racks are used in the first step of the nuclear waste management process, during the wet storage of the irradiated fuel assemblies. Their maximum sliding displacement and vertical force on support due to seismic load governs the design and layout of the units within the spent fuel pool. Their particular free-standing and submerged conditions lead to a highly nonlinear transient motion with decisive fluid-structure interactions. An analysis methodology based on the hydrodynamic mass concept was developed ad-hoc, but some dispersion of results still remains. Numerical outputs fluctuate as a consequence of the randomness of input data, model properties and solution controls. This uncertainty has traditionally been approached through deterministic analysis with conservative safety factors following guidelines based on practice. However, continuously increasing computer capacities open the door for a more accurate safety assessments based on reliability analysis. This paper carries out a reliability analysis for a basic 2-rack finite element model built in ANSYS Mechanical. The output uncertainty is estimated through the statistical analysis of a 500 deterministic simulation sample: transient envelopes, coefficient of variation, Wilks’ confidence intervals, etc. The final probability of failure is subsequently assessed through direct simulation, statistical inference and subrogate modelling of the response surface. [DOI]
Free-standing racks are metallic structures designed to store fuel assemblies in the spent fuel pool. Their seismic analysis deals with complex physical phenomena such as transient motion, inertial effects, dynamic contacts, fluid-structure interaction, water coupling, etc. The associated computational effort leads to cost-effective finite element models made up of simple elements: beams, masses and contacts. The modelling properties that describe the physical behaviour of such conceptual elements are uncertain and difficult to estimate. However, they have a certain impact on the computation of the rack response. This paper investigates the weight of the main modelling properties on computed outcomes focusing on sliding displacements and reactions on supports. The conceptual approach is supported with a statistical analysis of 100 simulations conducted in ANSYS Mechanical 14.0. A multivariate sensitivity analysis with scatter plots and variance-based methods is conducted over modelling variables including friction coefficients, contact stiffnesses, assumed fuel gaps, inertias, etc. Furthermore, some advises and rule of thumbs are provided for future designs. [DOI] -> Link to full text in repository
Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology. [DOI] -> Link to full text in repository
Free-standing racks are 5 m tall structures that store spent fuel removed from the nuclear power reactor on the depths of a spent fuel pool. Rack units are arranged on the floor of this 12 meters deep pool separated by only a few centimeters. Their response to an earthquake event is a troubling safety issue as they are in submerged and free-standing conditions. Such a seismic analysis deals with a highly nonlinear behavior, a transient dynamic response and a fluid-structure interaction problem. To overcome these difficulties in a cost-effective manner, the current analysis methodology implements the hydrodynamic mass concept in commercial finite element analysis software. However, some dispersion of results still exists in the application of this ad-hoc methodology. This paper reviews the seven major sources of uncertainty inherent to the current analysis methodology together with the main challenges of the seismic analysis. [DOI]  -> Link to full text in repository 

Dealing with extreme events implies working with events that have low probability of occurrence. To characterize these, the peak-over-threshold method alongside the generalized Pareto distribution is commonly applied. However, when it comes to significant wave heights, this approach is not recommended. Here, the generalized Pareto distribution is discussed based on data collected around the coast of Ireland. A careful choice of threshold takes place, and a new methodology to establish the threshold level is introduced. Five indicators to evaluate the fitting are considered to compare the different statistical models. No evidence was identified to justify the rejection of the generalized Pareto distribution to model exceedances. Results show that it may be statistically less, equally or more adequate, depending on the peak-over-threshold implementation. Nevertheless, the generalized Pareto bounded character is of elementary interest for wave statistics. In some circumstances not considering it might lead to unrealistic significant wave return levels. [DOI]

Fatigue cracking is a common problem that needs to be managed in the life cycles of steel structures. Operational inspections and repairs are important means of fatigue crack management. Driven by high relevance in safety control and budget saving, inspection and maintenance planning has been widely studied. However, the value of inspection and repairs has typically not been fully appreciated and quantified rationally before they are implemented. The basic idea of this paper is to address the planning problem with focus on repair other than on inspection. A maintenance strategy without inspection is studied and serves as comparison of a maintenance strategy with inspection. Then the value of repair and the value of inspection relative to repair can be evaluated respectively. An illustrative example is performed on a typical fatigue-prone detail in steel structures. [DOI] -> Link to full text in repository
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach. [DOI] -> Link to full text in repository

About WP5. Rail and Road Infrastructure

This paper showcases the importance of field testing in efforts to deal with the deteriorating infrastructure. It shows that when tested, bridges do not necessarily behave as expected under load, particularly with respect to boundary conditions. This is demonstrated via a load test performed on a healthy but ageing composite reinforced concrete bridge in Exeter, UK. The bridge girders were instrumented with strain transducers and static strains were recorded while a four-axle, 32 tonne lorry remained stationary in a single lane. Subsequently, a 3-D finite element model of the bridge was developed and calibrated based on the field test data. The bridge deck was originally designed as simply supported, however, it is shown (from the field test and calibrated model) that the support conditions were no longer behaving as pin-roller which affects the load distribution characteristics of the superstructure. Transverse load distribution factors (DFs) of the bridge deck structure were studied for different boundary conditions. The DFs obtained from analysis were compared with DFs provided in Design Manual for Roads and Bridges (DMRB) Standard Specification. Having observed in the load test that the ends of the deck appeared to be experiencing some rotational restraint, a parametric study was carried out to calculate mid-span bending moment (under DMRB assessment loading) for varying levels of restraint at the end of the deck. [DOI]

Historically the UK has been a pioneer and early adopter of experimental investigation techniques on new and operation structures, a technology that would now be described as Structural Health Monitoring (SHM), yet few of these investigations have been enduring or carried out on the long span or tall structures that feature in flagship SHM applications in the Far East. [DOI] -> Link to full text in repository

This paper introduces the various aspects of bridge safety models. It combines the different models of load and resistance involving both deterministic and stochastic variables. The actual safety, i.e. the probability of failure, is calculated using Monte Carlo simulation and accounting for localized damage of the bridge. A possible damage indicator is also presented in the paper and the usefulness of updating the developed bridge safety model, with regards to the damage indicator, is examined. [DOI] -> Link to publisher’s version  -> Link to full text in repository

A large amount of data is generated by Structural Health Monitoring (SHM) systems and, as a consequence, processing and interpreting this data can be difficult and time consuming. Particularly, if work activities such as maintenance or modernization are carried out on a bridge or tunnel infrastructure, a robust data analysis is needed, in order to accurately and quickly process the data and provide reliable information to decision makers. In this way the service disruption can be minimized and the safety of the asset and the workforce guaranteed. In this paper a data mining method for detecting critical behaviour of a railway tunnel is presented. The method starts with a pre-processing step that aims to remove the noise in the recorded data. A feature definition and selection step is then performed to identify the most critical area of the tunnel. An ensemble of change-point detection algorithms is proposed, in order to analyse the critical area of the tunnel and point out the time when unexpected behaviour occurs, as well as its duration and location. The work activities, which are carried out at the time of occurrence of the critical behaviour and have caused this behaviour, are finally identified from a database of the work schedule and used for the validation of the results. Using the proposed method, fast and reliable information about infrastructure condition is provided to decision makers. [DOI]

Railway importance in the transportation industry is increasing continuously, due to the growing demand of both passenger travel and transportation of goods. However, more than 35% of the 300,000 railway bridges across Europe are over 100-years old, and their reliability directly impacts the reliability of the railway network. This increased demand may lead to higher risk associated with their unexpected failures, resulting safety hazards to passengers and increased whole life cycle cost of the asset. Consequently, one of the most important aspects of evaluation of the reliability of the overall railway transport system is bridge structural health monitoring, which can monitor the health state of the bridge by allowing an early detection of failures. Therefore, a fast, safe and cost-effective recovery of the optimal health state of the bridge, where the levels of element degradation or failure are maintained efficiently, can be achieved. In this article, after an introduction to the desired features of structural health monitoring, a review of the most commonly adopted bridge fault detection methods is presented. Mainly, the analysis focuses on model-based finite element updating strategies, non-model-based (data-driven) fault detection methods, such as artificial neural network, and Bayesian belief network–based structural health monitoring methods. A comparative study, which aims to discuss and compare the performance of the reviewed types of structural health monitoring methods, is then presented by analysing a short-span steel structure of a railway bridge. Opportunities and future challenges of the fault detection methods of railway bridges are highlighted. [DOI] -> Link to full text in repository

Traditionally, damage identification techniques in bridges have focused on monitoring changes to modal-based Damage Sensitive Features (DSFs) due to their direct relationship with structural stiffness and their spatial information content. However, their progression to real-world applications has not been without its challenges and shortcomings, mainly stemming from: (1) environmental and operational variations; (2) inefficient utilization of machine learning algorithms for damage detection; and (3) a general over-reliance on modal-based DSFs alone. The present paper provides an in-depth review of the development of modal-based DSFs and a synopsis of the challenges they face. The paper then sets out to addresses the highlighted challenges in terms of published advancements and alternatives from recent literature. [DOI] -> Link to full text in repository

Overtime, the structural condition of bridges tends to decline due to a number of degradation processes, such as creep, corrosion and cyclic loading, among others. Considerable research has been conducted over the years to assess and monitor the rate of such degradation with the aim of reducing structural uncertainty. Traditionally, vibration-based damage detection techniques in bridges have focused on monitoring changes to modal parameters and subsequently comparing them to numerical models. These traditional techniques are generally time consuming and can often mistake changing environmental and operational conditions as structural damage. Recent research has seen the emergence of more advanced computational techniques that not only allow the assessment of noisier and more complex data, but also allow research to veer away from monitoring changes in modal parameters alone. This paper presents a review of the current state-of-the-art developments in vibration based damage detection in small to medium span bridges with particular focus on the utilization of advanced computational methods that avoid traditional damage detection pitfalls. A case study of the S101 Bridge is also presented to test the damage sensitivity a chosen methodology. [DOI] -> Link to full text in repository

In this paper, the authors conducted an experiment where a reinforced concrete beam was instrumented with a 5‐m long polyimide single distributed optical fibre sensors (DOFS) performing four equal segments externally bonded to the bottom surface of the element, using for each segment a different type of adhesive. Three strain gauges were also used for comparison purposes. This beam was then loaded, producing expected equal levels of strain in each of the fibre segments for a more direct comparison of the different adhesives performance. The effect of alternating the spatial resolution is also analysed. In this exercise, additionally to the comparison with the other instrumented sensors, it is also important the consideration and analysis of the associated spectral shift quality (SSQ) values of the DOFS measurements. [DOI] 
This document showcases the latest research conducted within UPC–BarcelonaTech on the performance of distributed optical fiber sensors (DOFS), more specifically the case of the optical backscattered reflectometry (OBR) system, in the structural health monitoring (SHM) of bridges, and large scale structures. This technology has demonstrated promising results for monitoring applications in a wide range of fields but due to its novelty, still presents several uncertainties which prevent its use in a more systematic and efficient way in civil engineering infrastructures, being this even more evident in the case of concrete structures. Therefore, different laboratory experimental campaigns were devised where multiple aspects of the instrumentation of DOFS technology in civil engineering applications were assessed and scrutinized. Such as the study of new implementation methods, comparison, and performance analysis of different bonding adhesives and spatial resolution. Additionally, the fatigue performance of this sensing typology was also assessed. Furthermore, the use of the OBR system technology was applied in a real-world structure in Barcelona, Spain, where new challenging conditions had to be addressed. Consequently, with this work, different conclusions are obtained related to the proficiency and limitations on the use of this particular type of optical sensing system in concrete structures. [DOI] 
In this paper, the authors present the results of a laboratory test where two reinforced concrete beams were instrumented with Distributed Optical Fiber Sensors (DOFS) to allow the monitoring g of strain in four different longitudinal segments bonded to their bottom surface. The test objective was to confirm the ability and good performance of the DOFS to monitor bridge structures in a long-term basis. To this end, the two specimens were submitted to a fatigue test up to 2 million load cycles. The amplitude of the stress range applied during the fatigue test was representative of what is expected on a standard highway bridge under vehicular traffic. Additionally, each of the four DOFS segments was bonded using a different adhesive to also investigate on the fatigue performance of the adhesive agents normally used. Finally, the collected data is checked against the data recorded with strain gauges also deployed on the beam specimens. [DOI] 
Distributed Optical Fiber Sensors (DOFSs), thanks to their multiple sensing points, are ideal tools for the detection of deformations and cracking in reinforced concrete (RC) structures, crucial as a means to ensure the safety of infrastructures. Yet, beyond a certain point of most DOFS-monitored experimental tests, researchers have come across unrealistic readings of strain which prevent the extraction of further reliable data. The present paper outlines the results obtained through an experimental test aimed at inducing such anomalies to isolate and identify the physical cause of their origin. The understanding of such a phenomenon would enable DOFS to become a truly performant strain sensing technique. The test consists of gradually bending seven steel reinforcement bars with a bonded DOFS under different conditions such as different load types, bonding adhesives, bar sections and more. The results show the bonding adhesives having an influence on the DOFS performance but not on the rise of anomalies while the reasons triggering the latter are narrowed down from six to two, reaching a strain threshold and a change in structure’s deformative behavior. Further planned research will allow identification of the cause behind the rise of strain-reading anomalies. [DOI] -> Link to full text in repository 

When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. [DOI] -> Link to full text in repository

The versatility and ease of installation of Distributed Optical Fibre Sensors (DOFS) compared with traditional monitoring systems are important characteristics to consider when facing the Structural Health Monitoring (SHM) of real world structures. The DOFS used in this study provide continuous (in space) strain data along the optical fibre with high spatial resolution. The main issues and results of two different existing structures monitored with DOFS, are described in this paper. The main SHM results of the rehabilitation of an historical building used as hospital and the enlargement of a pre-stressed concrete bridge are presented. The results are obtained using a novel DOFS based on an Optical Backscattered Reflectometry (OBR) technique. The application of the optical fibre monitoring system to two different materials (masonry and concrete) provides also important insights on the great possibilities of this technique when monitoring existing structures. In fact, the influence of strain transfer between the DOFS and the bonding surface is one of the principal effects that should be considered in the application of the OBR technique to real structures. Moreover, and because structural surfaces generally present considerable roughness, the procedure to attach the optical fibre to the two monitored structures is described. [DOI]-> Link to full text in repository

In this work, an experiment on two small concrete beams is described where Rayleigh based distributed optical fiber sensors (DOFS) are implemented together with traditional electrical strain gauges for the monitoring of these elements during a three-point load test. Part of the DOF sensor is embedded without protective coating directly in the rebar inside the concrete, being the remaining fiber glued to the surface of the element after the concrete hardening. This allows the direct comparison between the developed strains on the surface of concrete and the rebar with the use of a single sensor. Moreover, two types of adhesives are studied and then compared. From all the possible distributed sensing techniques, the Rayleigh based Optical Frequency Domain Reflectometer (OFDR) is the one which enables the better spatial resolution without the need of post-processing algorithms. In this way, in this experiment, this is going to be the used sensing technique. [DOI] -> Link to full text in repository

The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures. [DOI] -> Link to full text in repository

 This paper investigates the feasibility of detecting local damage in a bridge using Laser Doppler Vibrometer (LDV) measurements taken from a vehicle as it passes over the bridge. Six LDVs are simulated numerically on a moving vehicle, collecting relative velocity data between the vehicle and the bridge. It is shown that Instantaneous Curvature (IC) at a moving reference, which is the curvature of the bridge at an instant in time, is sensitive to local damage. The vehicle measures Rate of Instantaneous Curvature (RIC), defined as the first derivative of IC with respect to time. A moving average filter is found to reduce the effects of noise on the RIC data. A comparison of filtered RIC measurements in healthy and damaged bridges shows that local damage can be detected well with noise-free measurements and can still be detected in the presence of noise. [DOI] -> Link to full text in repository

This paper describes a new procedure for bridge damage identification through drive-by monitoring. Instantaneous curvature (IC) is presented as a means to determine a local loss of stiffness in a bridge through measurements collected from a passing instrumented vehicle. Moving reference curvature (MRC) is compared with IC as a damage detection tool. It is assumed that absolute displacements on the bridge can be measured by the vehicle. The bridge is represented by a finite element (FE) model. A Half-car model is used to represent the passing vehicle. Damage is represented as a local loss of stiffness in different parts of the bridge. 1% random noise and no noise environments are considered to evaluate the effectiveness of the method. A generic road surface profile is also assumed. Numerical simulations show that the local damage can be detected using IC if the deflection responses can be measured with sufficient accuracy. Damage quantification can be obtained from MRC. [DOI] -> Link to full text in repository

This paper presents an assessment of the accuracy of the HDM-4 fuel consumption model calibrated for the United Kingdom and evaluates the need for further calibration of the model. The study focuses on HGVs and compares estimates made by HDM-4 to measurements from a large fleet of vehicles driving on motorways in England. The data was obtained from the telematic database of truck fleet managers (SAE J1939) and includes three types of HGVs: light, medium and heavy trucks. Some 19,991 records from 1645 trucks are available in total. These represent records of trucks driving at constant speed along part of the M1 and the M18, two motorways in England. These conditions have been simulated in HDM-4 by computing fuel consumption for each truck type driving at a constant speed of 85 km/h on a flat and straight road segment in good condition. Estimates are compared to real measurements under two separate sets of assumptions. First, the HDM-4 model calibrated for the UK has been used. Then, the model was updated to take into account vehicle weight and frontal area specific to the considered vehicles. The paper shows that the current calibration of HDM-4 for the United Kingdom already requires recalibration. The quality of the model estimates can be improved significantly by updating vehicle weight and frontal area in HDM-4. The use of HGV fleet and network condition data as described in this paper provides an opportunity to verify HDM-4 continuously. [DOI]   -> Link to full text in repository 
This paper reports on patents worldwide related to both hardware and software for the contraction and deployment of UAVs and is intended to provide a snapshot of currently available unmanned aerial vehicles (UAVs) technologies, as well as to identify recent trends and future opportunities in affiliated hardware and software. Basic components related to self-designed units are explained (e.g. platform selection, autopilot control comparison and sensor selection). Current applications and research areas of UAVs are discussed. The research and product development trends focus on extending the flight time, enhancing the water and wind resistant capabilities, improving autonomous navigation abilities, and enriching the payload capacity. Since autonomous navigation is a key technology in UAVs applications, concepts about this are also explained. [DOI] -> Link to full text in repository