Early Stage Researcher
Full Scale Dynamics Ltd (United Kingdom)

Project 7: Railway bridge safety and condition assessment

Click on the icons for Farhad’s email, blog and Linkedin profile

Research Interests:

Bridge loading; Weigh-in-motion; Structural health monitoring; Finite element modeling; Structural dynamics

Biography:

Farhad Huseynov received his BSc degree in Civil Engineering from Middle East Technical University (METU), Turkey, and MSc (with distinction) degree in Structural Engineering from the University of Sheffield, UK, in 2009 and 2012, respectively. After graduation he worked as a Structural Design Engineer for several industry leading companies and gained an extensive experience specifically in bridge design projects. He has worked on a wide range of projects including but not limited to short- and long-span precast girder, integral, long span continuous bridges design works.

His previous research experience includes Finite Element Modeling of Bosporus Suspension Bridge. He joined TRUSS ITN in November 2015.

Research Outputs:

Publications in TRUSS

This paper showcases the importance of field testing in efforts to deal with the deteriorating infrastructure. It shows that when tested, bridges do not necessarily behave as expected under load, particularly with respect to boundary conditions. This is demonstrated via a load test performed on a healthy but ageing composite reinforced concrete bridge in Exeter, UK. The bridge girders were instrumented with strain transducers and static strains were recorded while a four-axle, 32 tonne lorry remained stationary in a single lane. Subsequently, a 3-D finite element model of the bridge was developed and calibrated based on the field test data. The bridge deck was originally designed as simply supported, however, it is shown (from the field test and calibrated model) that the support conditions were no longer behaving as pin-roller which affects the load distribution characteristics of the superstructure. Transverse load distribution factors (DFs) of the bridge deck structure were studied for different boundary conditions. The DFs obtained from analysis were compared with DFs provided in Design Manual for Roads and Bridges (DMRB) Standard Specification. Having observed in the load test that the ends of the deck appeared to be experiencing some rotational restraint, a parametric study was carried out to calculate mid-span bending moment (under DMRB assessment loading) for varying levels of restraint at the end of the deck.

DOI: http://dx.doi.org/10.1007/s13349-017-0223-x

This paper showcases the importance of field testing in efforts to deal with the deteriorating infrastructure. It demonstrates a load test performed on a healthy but aging composite reinforced concrete bridges in Exeter, UK. The bridge girders were instrumented with strain transducers and static strains were recorded while a four-axle, 32 tonne lorry remained stationary in a single lane. The results obtained from the field test were used to calculate transverse load distribution factors (DFs) of the deck structure for each loading case. Additionally, a 3-D finite element model of the bridge was developed and calibrated based on field test data. Similar loading cases were simulated on the analytical model and behaviour of the structure under static loading was studied. It was concluded that the bridge support conditions had changed throughout its service life, which affected the superstructure load distribution characteristics. Finally, DFs obtained from analysis were compared with factors provided in Design Manual for Roads and Bridges Standard Specification for similar type of bridges.

Link to full text in repository