Horizon 2020 Marie Skłodowska-Curie Innovative Training Network

António Barrias

MSc
Home/António Barrias
António Barrias 2019-05-29T08:51:50+00:00

Research Interests:

Structural engineering; Bridge design; Bridge monitoring; Structural health monitoring; Structural numerical modelling; Optical Fiber Sensors

Biography:

Mr. Barrias completed his graduation in 2013 at FEUP (Faculty of Engineering of the University of Porto) in Civil Engineering – Structures specialization, with a final grade of 15 (out of 20), corresponding to grade A on the European grading scale. During his graduation, he enrolled in the Erasmus programme at the Czech Technical University of Prague. His master thesis consisted of the study and design of a new road bridge between the cities of Porto and Vila Nova de Gaia.

After his graduation, he made an IASTE internship at Technischen Universität Kaiserslautern, Germany for two months where he worked in the Department of Geotechnics. From February of 2014 until August of 2015, he was a full researcher at LABEST (Laboratory of Concrete Technology and Structural Behavior) at FEUP where he was involved in the research programme entitled “GNSS and accelerometers data fusion in large structures monitoring”.

He joined TRUSS ITN in September 2015. On the 5th November 2018, he successfully defended the doctoral thesis resulting from his research in TRUSS. A summary of his research highlights and training, dissemination and outreach activities in TRUSS  other than network-wide events, is provided in the pdf below, followed by more detailed info on his research outputs.

ESR11_Summary

Research Outputs:

  • Barrias, A., Pestana, A., Félix, C. and Figueiras, J. (2014), “Monitorização de deslocamentos em estruturas com recurso ao GNSS”, in Proceedings of 5ªs Jornadas Portuguesas de Engenharia de Estruturas, Lisboa.

Publications in TRUSS

Journal papers
In this paper, the authors conducted an experiment where a reinforced concrete beam was instrumented with a 5‐m long polyimide single distributed optical fibre sensors (DOFS) performing four equal segments externally bonded to the bottom surface of the element, using for each segment a different type of adhesive. Three strain gauges were also used for comparison purposes. This beam was then loaded, producing expected equal levels of strain in each of the fibre segments for a more direct comparison of the different adhesives performance. The effect of alternating the spatial resolution is also analysed. In this exercise, additionally to the comparison with the other instrumented sensors, it is also important the consideration and analysis of the associated spectral shift quality (SSQ) values of the DOFS measurements. [DOI] 
This document showcases the latest research conducted within UPC–BarcelonaTech on the performance of distributed optical fiber sensors (DOFS), more specifically the case of the optical backscattered reflectometry (OBR) system, in the structural health monitoring (SHM) of bridges, and large scale structures. This technology has demonstrated promising results for monitoring applications in a wide range of fields but due to its novelty, still presents several uncertainties which prevent its use in a more systematic and efficient way in civil engineering infrastructures, being this even more evident in the case of concrete structures. Therefore, different laboratory experimental campaigns were devised where multiple aspects of the instrumentation of DOFS technology in civil engineering applications were assessed and scrutinized. Such as the study of new implementation methods, comparison, and performance analysis of different bonding adhesives and spatial resolution. Additionally, the fatigue performance of this sensing typology was also assessed. Furthermore, the use of the OBR system technology was applied in a real-world structure in Barcelona, Spain, where new challenging conditions had to be addressed. Consequently, with this work, different conclusions are obtained related to the proficiency and limitations on the use of this particular type of optical sensing system in concrete structures. [DOI] 
In this paper, the authors present the results of a laboratory test where two reinforced concrete beams were instrumented with Distributed Optical Fiber Sensors (DOFS) to allow the monitoring g of strain in four different longitudinal segments bonded to their bottom surface. The test objective was to confirm the ability and good performance of the DOFS to monitor bridge structures in a long-term basis. To this end, the two specimens were submitted to a fatigue test up to 2 million load cycles. The amplitude of the stress range applied during the fatigue test was representative of what is expected on a standard highway bridge under vehicular traffic. Additionally, each of the four DOFS segments was bonded using a different adhesive to also investigate on the fatigue performance of the adhesive agents normally used. Finally, the collected data is checked against the data recorded with strain gauges also deployed on the beam specimens. [DOI] 
Distributed Optical Fiber Sensors (DOFSs), thanks to their multiple sensing points, are ideal tools for the detection of deformations and cracking in reinforced concrete (RC) structures, crucial as a means to ensure the safety of infrastructures. Yet, beyond a certain point of most DOFS-monitored experimental tests, researchers have come across unrealistic readings of strain which prevent the extraction of further reliable data. The present paper outlines the results obtained through an experimental test aimed at inducing such anomalies to isolate and identify the physical cause of their origin. The understanding of such a phenomenon would enable DOFS to become a truly performant strain sensing technique. The test consists of gradually bending seven steel reinforcement bars with a bonded DOFS under different conditions such as different load types, bonding adhesives, bar sections and more. The results show the bonding adhesives having an influence on the DOFS performance but not on the rise of anomalies while the reasons triggering the latter are narrowed down from six to two, reaching a strain threshold and a change in structure’s deformative behavior. Further planned research will allow identification of the cause behind the rise of strain-reading anomalies. [DOI] -> Link to full text in repository 
When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. [DOI] -> Link to full text in repository

The versatility and ease of installation of Distributed Optical Fibre Sensors (DOFS) compared with traditional monitoring systems are important characteristics to consider when facing the Structural Health Monitoring (SHM) of real world structures. The DOFS used in this study provide continuous (in space) strain data along the optical fibre with high spatial resolution. The main issues and results of two different existing structures monitored with DOFS, are described in this paper. The main SHM results of the rehabilitation of an historical building used as hospital and the enlargement of a pre-stressed concrete bridge are presented. The results are obtained using a novel DOFS based on an Optical Backscattered Reflectometry (OBR) technique. The application of the optical fibre monitoring system to two different materials (masonry and concrete) provides also important insights on the great possibilities of this technique when monitoring existing structures. In fact, the influence of strain transfer between the DOFS and the bonding surface is one of the principal effects that should be considered in the application of the OBR technique to real structures. Moreover, and because structural surfaces generally present considerable roughness, the procedure to attach the optical fibre to the two monitored structures is described. [DOI] -> Link to full text in repository
The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures. [DOI] -> Link to full text in repository
Conference contributions
 Inspections and maintenance of infrastructure are expensive. In some cases, overdue or insufficient maintenance/monitoring can lead to an unacceptable risk of collapse and to a tragic failure as the Morandi bridge in Genoa, Italy, on 14th August 2018. An accurate assessment of the safety of a structure is a difficult task due to uncertainties associated with the aging and response of the structure, with the operational and environmental loads, and with their interaction. During the period from 2015 to 2019, the project TRUSS (Training in Reducing Uncertainty in Structural Safety) ITN (Innovative Training Network), funded by the EU H2020 Marie Curie-Skłodowska Action (MSCA) programme, has worked towards improving the structural assessment of buildings, energy, marine, and transport infrastructure. Fourteen Early Stage Researchers (ESRs) have been recruited to carry out related research on new materials, testing methods, improved and more efficient modelling methods and management strategies, and sensor and algorithm development for Structural Health Monitoring (SHM) purposes. This research has been enhanced by an advanced program of scientific and professional training delivered via a collaboration between 6 Universities, 1 research institute and 11 companies from 5 European countries. The high proportion of companies participating in TRUSS ITN has ensured significant industrial expertise and has introduced a diverse range of perspectives to the consortium on the activities necessary to do business in the structural safety sector. -> Link to full text in repository
Distributed optical fiber sensors (DOFS) is one of the most promising and exciting technologies under research to be applied in the structural health monitoring (SHM) of civil engineering infrastructures. Therefore, in this paper, the authors present a laboratory experiment where a reinforced concrete beam was instrumented with a 5-meter-long polyimide DOFS in a way that four equal segments were bonded to the bottom surface of the beam using for each segment a different type of adhesive. Three strain gauges were also used to compare the results. The beam was then loaded, generating expected equal levels of strain for each of the segments allowing for a direct comparison between them. In this exercise, additionally to the comparison with the other instrumented sensors it is also important the consideration and analysis of the associated Spectral Shift Quality (SSQ) values of the DOFS measurements.
The use of fiber optic sensors on civil engineering structural health monitoring (SHM) applications have become quite popular for the past two decades. Within this type of sensors however, the study and use of Optical Backscatter Reflectometry (OBR) based Distributed Optical Fiber Sensors (DOFS) is relatively new. In this way, there is still some uncertainty that would allow the use of this technology in a more systematic and standardized way. Some of this uncertainty is related with the long-term reliability behavior of these sensors when applied on the monitoring of a structure under a large number of load cycles. In this way, the authors conducted a laboratory experiment where a reinforced concrete beam was instrumented with a DOFS that was adhered in a way to allow the measuring of strain on four different longitudinal segments on its bottom surface. A fatigue test was then conducted on this element where the inputted load range was the one expected on a standard highway bridge between its self-weight and the additional traffic load. Furthermore, each longitudinal segment of the DOFS was adhered to the concrete using a different adhesive in order to assess the optimal one in these conditions. The obtained data is then compared with strain gauges that are also instrumented on the concrete beam. -> Link to full text in repository
The authors conducted a laboratory experiment where two reinforced concrete beams were instrumented with a Distributed Optical Fiber Sensors that were adhered to allow the measuring of strain on four different longitudinal segments on their bottom surface. A fatigue test was then conducted on these elements where the load range was the one expected on a standard highway bridge between its permanent and the additional traffic load. Furthermore, each longitudinal segment of the DOFS was adhered to the concrete using a different adhesive in order to assess the optimal one in these fatigue conditions. The obtained data is then compared with strain gauges that were also instrumented on the concrete beams.-> Link to full text in repository
In this paper, the authors conducted an experiment where a reinforced concrete beam was instrumented with a single DOFS performing four equal segments externally bonded to the bottom surface of the element. Each segment was adhered to the concrete using a different adhesive. This beam was then loaded, producing expected equal levels of tension in each of the fiber segments for a more direct comparison of the different adhesives performance. The experimental data is subsequently compared with the data provided through more conventional electrical strain gauges that were also deployed in the beam. The effect of alternating the spatial resolution and sampling acquisition is also analyzed. The results provided here will shed a clearer light on how to proceed when applying this promising sensing technique to concrete structures, mainly on what the bonding materials and resolution are concerned. -> Link to full text in repository

This paper reports on recent contributions by the Marie Skłodowska-Curie Innovative Training Network titled TRUSS (Training in Reducing Uncertainty of Structural Safety) to the field of structural safety in rail and road bridges (http://trussitn.eu). In TRUSS, uncertainty in bridge safety is addressed via cost efficient structural performance monitoring and fault diagnostics methods including: (1) the use of the rotation response due to the traffic traversing a bridge and weigh-in-motion concepts as damage indicator, (2) the combination of design parameters in probabilistic context for geometrical and material properties, traffic data and assumption on level of deterioration to evaluate bridge safety (via Bayesian updating and a damage indicator based on real time measurement), (3) the application of a fuzzy classification technique via feature selection extracted using empirical mode decomposition to detect failure, and (4) the testing of alternative vibration based damage sensitive features other than modal parameters. Progress has also been made in improving modern technologies based on optical fiber distributed sensing, and sensors mounted on instrumented terrestrial and on aerial vehicles, in order to gather more accurate and efficient info about the structure. More specifically, the following aspects have been covered: (a) the spatial resolution and strain accuracy obtained with optical distributed fiber when applied to concrete elements as well as the ideal adhesive, and the potential for detecting crack or abnormal deflections without failure or debonding, (b) the possibility of using the high-resolution measurement capabilities of the Traffic Speed Deflectometer for bridge monitoring purposes and, (c) the acquisition of bridge details and defects via unmanned aerial vehicles. -> Link to full text in repository

In this paper, an experiment where distributed optical fiber sensors (DOFS) were implemented in two small concrete beams subjected to a three-point load test is outlined. Here, an optical backscatter reflectometry based DOFS is implemented simultaneously embedded in the concrete (glued to the steel rebar) and attached to the outer surface of the concrete after its hardening. For comparison purposes, three electrical strain gauges are also used in the rebar. The main objectives with this experiment, is to analyze the feasibility of installation of DOFS directly on the rebar element of a reinforced concrete beam and compare the measured strain at rebar and surface of the concrete. -> Link to full text in repository

In this work, an experiment on two small concrete beams is described where Rayleigh based distributed optical fiber sensors (DOFS) are implemented together with traditional electrical strain gauges for the monitoring of these elements during a three-point load test. Part of the DOF sensor is embedded without protective coating directly in the rebar inside the concrete, being the remaining fiber glued to the surface of the element after the concrete hardening. This allows the direct comparison between the developed strains on the surface of concrete and the rebar with the use of a single sensor. Moreover, two types of adhesives are studied and then compared. From all the possible distributed sensing techniques, the Rayleigh based Optical Frequency Domain Reflectometer (OFDR) is the one which enables the better spatial resolution without the need of post-processing algorithms. In this way, in this experiment, this is going to be the used sensing technique. [DOI] -> Link to full text in repository

In the past decade, several works and studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of Distributed Optical Fiber Sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. In this document, after a very brief introduction to the fundamentals of this technology, the most representative work being developed at UPC—BarcelonaTech with the use of these sensors is going to be described. These applications range from laboratory experiments to real world structures monitoring scenarios where different challenges and particular issues had to be overthrown in each one of them. Furthermore, the most recent laboratory experiment performed by this group where DOFS were deployed is going to be described in greater detail. [DOI] -> Link to full text in repository

In the present paper, a novel technique is used to monitor and evaluate shear crack patterns in Partially Prestressed Concrete (PPC) beams. The proposed technique is based on experimental data obtained in two PPC beams tested in laboratory and instrumented by Distributed Optical Fiber Sensors (DOFS). The DOFS conform optical fiber grids bonded in the surfaces of the beams. The DOFS experimental data were obtained using an OBR (Optical Backscattered Reflectometer) system that provides continuous strain data with high spatial resolution and cracks can be characterized. The continuous (in space) monitoring of the strain along the DOFS, including the crossing of a crack provides additional information without requiring prior knowledge of the cracked zone.

Several experiences have demonstrated the feasibility of using OFDR theory and SWI technique in the structural monitoring of concrete structures (Villalba and Casas 2013, Rodriguez et al 2015). In the specific case of detection, location and control of cracking in concrete structures, OBR system is an attractive monitoring tool. In the evaluation of shear crack pattern, the inclination of the cracking pattern is an additional unknown property. Two PPC beams named I1 and I2, were tested using DOFS grids as measuring alternative to check the proposed structural monitoring method.

According to the preliminary results obtained in this paper, the use of DOFS is a feasible methodology to obtain important information in the study of shear structural behavior in concrete structures. Continuous strain data at different loading levels were obtained with high spatial resolution by OBR system. Using this data, detection and location of flexural and shear cracks were obtained without requiring prior knowledge of the cracked zone.

Finally, in the evaluation of the shear crack pattern, not only crack initiation and location are of importance, but also crack width, shear crack angles and shear sliding displacements along the cracks have to be measured to evaluate the shear performance of a structural element. -> Link to full text in repository

References.-
Villalba S. and Casas J. 2013. Application of optical fiber distributed sensing to health monitoring of concrete structures. Mechanical Systems and Signal Processing, 441-451.
Rodríguez G., Casas J., and Villalba S. 2015. Cracking assessment in concrete structures by distributed optical fiber. Smart Materials and Structures, 24, 1-11.

It’s widely recognized that during its lifetime, civil engineering structures are subjected to adverse changes that affect their condition and structural safety. These changes are due to several factors such as damage and deterioration induced by environmental aggressions, design and/or construction errors, overloading, not expected events such as earthquakes or simply due to the normal degradation associated with the normal use of the structure through their working life. In this way, the application of Structural Health Monitoring (SHM) systems to these civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures.

In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. These sensors present several advantages when compared with the more traditional and used electric sensors, such as their immunity to electromagnetic interferences and corrosion, their ability to withstand high temperatures and their small dimensions and light weight just to name a few. Furthermore, with distributed fiber optic technology it’s possible to measure virtually any point along a single fiber allowing for truly distributed sensing measurements with great spatial resolution. The possibility of understanding and monitor the distributed behaviour of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. These distributed fiber optic sensors (DOFS) when bonded or embedded in the structural material works as its nervous system and for all these reasons, it is acknowledged as the most promising fiber optic sensing technique.

In the past decade, several R&D works have been performed with the goal of improving the knowledge and developing new techniques associated with the application of DOFS in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to DOFS, the latest developments related with the improvement of these products as long as a review of their diverse applications on structural health monitoring with special focus on engineering structures. -> External link to publisher’s version -> Link to full text in repository

Two different existing structures monitored with distributed optical fiber sensors, are described in this paper. The principal Structural Health Monitoring (SHM) results of a valuable hospital rehabilitation (Sant Pau Hospital) and the enlargement of a prestressed concrete bridge (Sarajevo bridge), are presented. The results are obtained using a novel Distributed Optical Fiber Sensor system (DOFSs) based on an Optical Backscattered Reflectometry (OBR) technique. The versatility and easy installation of DOFSs compared with traditional monitoring systems is an important characteristic to consider its application in monitoring real world structures. The DOFS used in this study provide continuous (in space) strain data along the optical fiber with high spatial resolution in order of centimeters. Also and because the structural surfaces generally are roughness, the procedure to attach the optical fiber to two monitored structures are described. This is an important aspect because the influence in strain transfer between the DOFS and the surface is one of the principal parameters that should be considered in the application of the OBR technique.

Numerous works presenting information regarding the study of the potential of these sensors have been published in the last decade (Rodríguez et al. 2015 a,b; Palmieri & Schenato 2013) but very few showcase their application to real world structures. One of the various advantages of this technology is the easy installation to real life structures and the variety of them that can be instrumented with it. In both studied instrumentations the used fiber is based on a type of fiber optic in which the wavelength is established and compatible with a commercial data acquisition system. Each section of optical fiber has a maximum length of 50 meters and the union between the fiber and structural element (concrete/masonry) was performed using a twocomponent type epoxy adhesive. A coating of a polymer (polyimide) was used to protect the fiber against scratches and environmental attack.

Due to their particularities, each one of these structures underwent changes in their structural behavior without, nevertheless, ceasing to serve their purpose, i.e. accommodating patients in the case of the Sant Pau Hospital and the passage of vehicles and pedestrians in the case of Sarajevo bridge thanks to the application of these sensors. With the results obtained in this work, the OBR theory associated with DOFS proved its reliability in SHM of civil engineering applications and continues to showcase the promising future of monitoring systems based on this technology. -> Link to full text in repository

References.-
Palmieri, L. & Schenato, L., 2013. Distributed optical fiber sensing based on Rayleigh scattering. The Open Optics Journal, 7(1).
Rodríguez, G., Casas, J.R. & Villaba, S., 2015. Cracking assessment in concrete structures by distributed optical fiber. Smart Materials and Structures, 24(3), p.35005.
Rodríguez, G., Casas, J.R.. & Villalba, S., 2015. SHM by DOFS in civil engineering : a review. Structural Health Monitoring and Maintenance, 2(4), pp.357–382.